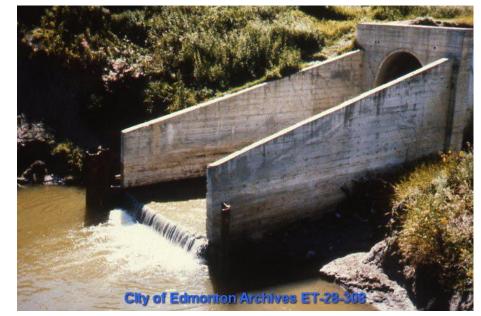
DEVELOPING A TOOL TO MANAGE INDUSTRIAL RUNOFF RELEASES USING THE WATER QUALITY BASED EFFLUENT LIMITS (WQBEL) PROTOCOL

Chris Banmann, M.Sc., B.I.T. (Matrix Solutions) Shaun Toner, B.Sc., P.Biol., PMP (Matrix Solutions)

October 15th, 2021

Outline

- WQBELs? What are they and how do they work?
- WQBELs simple vs. complex
- Case Study: Tolko OSB Facility
- Developing a tool for calculating WQBELs
- Conclusions and future applications



Water Quality Based Effluent Limits Procedures Manual – Alberta Environmental Protection (AEP), 1995

Intro to WQBELs

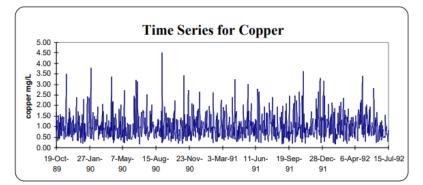
- Often applied:
 - municipal facilities
 - ambient conditions restrain effluent limits (e.g. Calgary and the bow river)
 - point sources of pollution
- Incorporates site specific hydrology and water quality

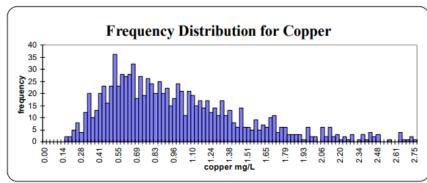
WQBEL - Procedure

Wasteload allocation modelling. I.e. analyze effluent under a variety of conditions

Setting "end of pipe" WQBEL's that provide a high level of environmental protection

WQBELs Simplified vs. Complex


Review Data


- Determine sample size
- Create distribution
- Identify gaps and select method

Simplified

- Complex
- Assume steady state conditions
- Use worst case conditions to set limits

- Use dynamic modelling
- Use percentiles to create limits (95% typically)

Water Quality Based Effluent Limits Procedures Manual – Alberta Environmental Protection (AEP), 1995

WQBELs Simplified vs. Complex

Simplified

Complex

Pros

- Limited data required
- Limited calculation/statistics required

Cons
Likely yields more stringent results (based on "worst-case" conditions)
Assumptions may not be accepted by regulator

Pros

Increased accuracy in water quality predictions
Can calculate the likelihood of exceedances, instead of assuming worst case conditions

Cons

- Requires a minimum set of measurement, ideally taken at regular intervals.
- More complex calculations required.

This presentation will use the simplified method

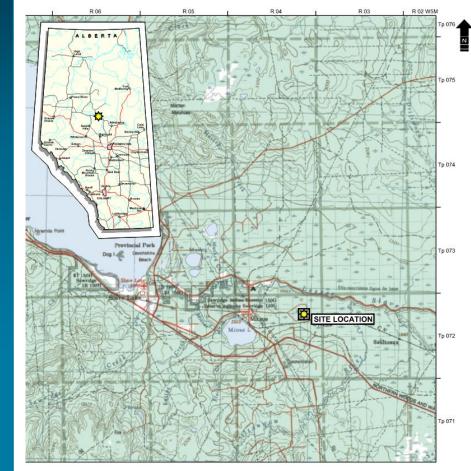
Calculation

C = (QeCe + ff(Qs)Cs) / (Qe + ff(Qs))

Qe = effluent volume

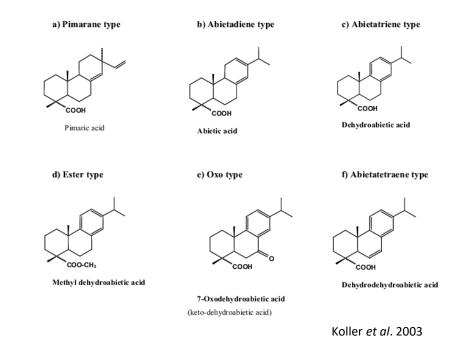
- Qs = receiving watercourse volume
- Ce = effluent concentration
- *Cs* = background concentration (receiving watercourse)

ff = fraction of flow


C = Resultant instream concentration

Case Study – Tolko OSB Facility

- Slave Lake Engineered Wood Product Processing Plant
- 18km east of Slave lake, operating consistently since 2013
- Initially run as a zero-discharge site, but since 2018 this has not been possible
- Tolko/Matrix submitted an Industrial Runoff Management Plan in 2019
- AEP requested WQBELs be calculated that consider the receiving watercourse



Water Quality and the Forest Products Industry

- Unique water quality challenges related to the processing and storage of wood products.
- Wood extractives function as fungicides, insecticides, and anti-oxidants. Contribute to toxicity in waste streams.
- Common contaminants of concern include:
 - TSS
 - Organics (biochemical oxygen demand, chemical oxygen demand, total carbon, and Phenols)
 - Tannins and lignins
 - Nutrients (Phosphorus, ammonia)
 - Resins and fatty acids (especially high in softwood lumber)
 - Metals and ions (specific to onsite industrial processing)

- Two industrial runoff ponds on site, one combined waste stream during release
- Small watercourse north of site, eventually discharges into the Lesser Slave River (~7.5km downstream)

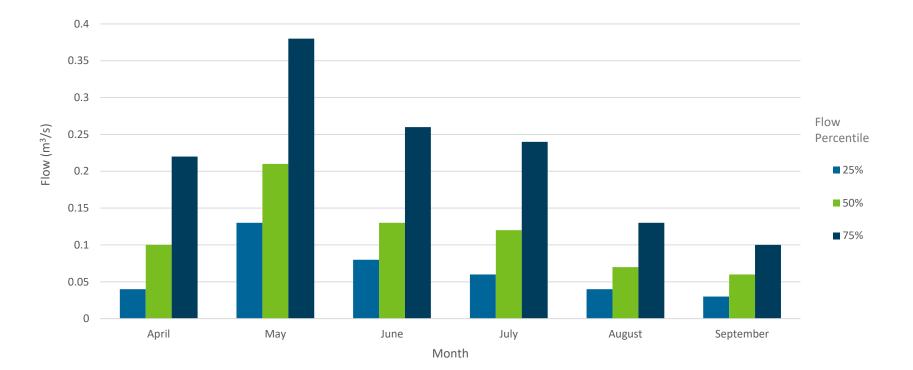
Problem

$$C = (QeCe + ff(Qs)Cs) / (Qe + ff(Qs))$$

Fill data gaps to calculate WQBELs

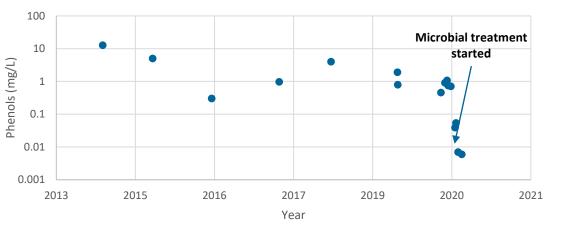
- Qe Controlled during release, not fixed
- Qs Unknown, this analysis occurred in winter!
- *Ce* pond water quality data from 2014 to 2020, but wasn't completely representative...
- Cs limited data, needed to be expanded
- ff assumed complete mixing
- C = ?

Qe = effluent volume Qs = receiving watercourse volume Ce = effluent concentration Cs = background concentration (receiving watercourse) ff = fraction of flow C = Resultant instream concentration



Hydrology

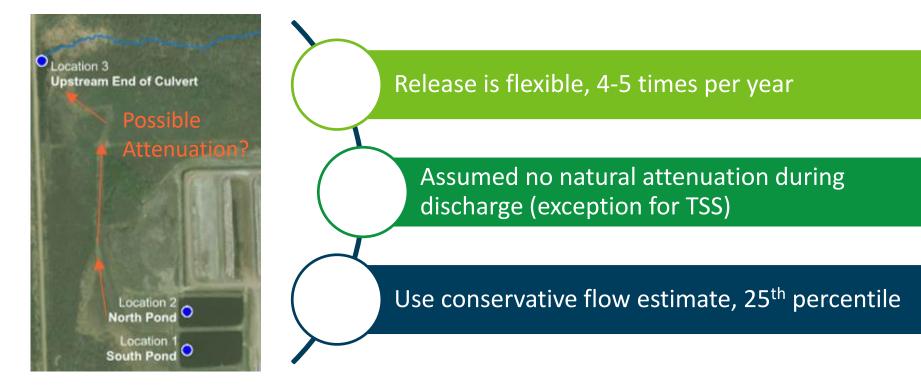
- Flow rate for the receiving watercourse unknown
- Used Water Survey of Canada data for nearby Sawridge Creek
- Calculated drainage area using lidar
- Created an estimate of monthly flow

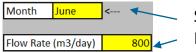


Water Quality

- Site was previously zero discharge
- Couldn't use 2014 to 2019 historical water quality data, not representative of current conditions

Water Quality


- Additional data was collected from the receiving watercourse and ponds in 2020 during different seasons (data had previously been annual)
- Collected sediment from the ponds to create a TSS-Turbidity curve
- COCs likely to exceed were chosen based on historical data
 - TSS
 - Chloride
 - Phenols
 - BOD
 - Total metals
 - Resins and fatty acids



Tool - Assumptions

Tool – Calculator

Select month and Flow Rate

Month	June	<	
Flow Rate		400	

Table 2:	Pond Water Quality vs. Receiving Watercourse Water Quality										
Sample	pH	CI TSS		COD	BOD	Phenols					
Location	рп	mg/L	mg/L	mg/L	mg/L	mg/L					
Pond WQ	8.0	300	20	700	30	0.040					
Receiving WQ	7.5	5	10	300	5	0.001					

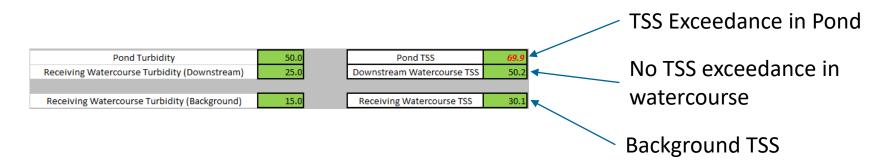
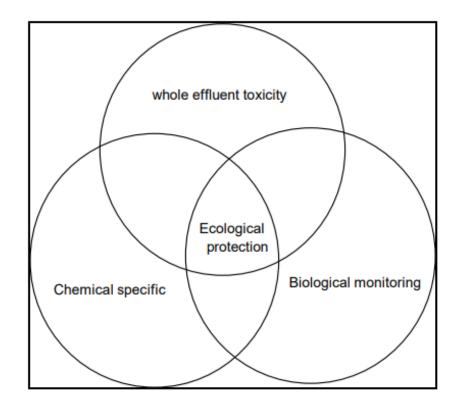

Table 2:	Pond Water Quality vs. Receiving Watercourse Water Quality										
Sample	Hq	CI	TSS	COD	BOD	Phenols mg/L					
Location	рп	mg/L	mg/L	mg/L	mg/L						
Pond WQ	8.0	300	20	700	30	0.040					
Receiving WQ	7.5	5	10	300	5	0.001					

Table 1:	Resultant Instream Concentration					Table 1:	Resultant Instream Concentration								
	General Parameters							General Parameters							
Flow Estimate	pН	Cl	TSS	5	COD	BOD	Phenols	Flow Estimate	pН	Cl	TSS	COD	BOD	Phen	ols
	-	7.6	36	11	342	8	0.005		7.	.5 21		. 322		6 (0.003

Phenol PAL guideline = 0.004 mg/L

Tool – Calculator (TSS)

- TSS should not be >25 mg/L relative to background
- Turbidity values can be converted to TSS
- Daily turbidity reading collected by staff
- Pond TSS values can be used prior to release, but downstream watercourse values can be used during release


Conclusions

- WQBELs can be applied to sites with variable releases and changing water quality.
- WQBEL calculators allow flexibility. Site not constrained by previous exceedances.
- Desktop hydrology can be used to guide release. Can be confirmed or updated if too restrictive (rating curve development recommended).

Applicability to other Industrial Sites

- Water chemistry not the only factor, need to consider the triad
- WQBELs can be applied (and may be requested) for other industrial sites
- Goal is to protect aquatic life, human health and limit sedimentation/erosion
- Simple vs. Complex? Depends on site and data availability
- Non-point source applications possible (risk management)?

Questions?

Chris Banmann, M.Sc., B.I.T. cbanmann@matrix-solutions.com

Shaun Toner, B.Sc., P.Biol., PMP stoner@matrix-solutions.com

Sandra Stuart, B.Sc. (Hons), CRSP (NP), EP Sandra.stuart@tolko.com

