Enhanced In Situ Solidification and Stabilization (ISS) Blends: Impacts of Adding Sodium Persulfate and Water Content

Remediation Technology Symposium 2021 (RemTech 2021) Banff, Alberta

Brant Smith Director of Technology: Persulfates, Soil & Groundwater Remediation Evonik Active Oxygens

It's Official!

PeroxyChem, LLC is now Evonik Active Oxygens, LLC

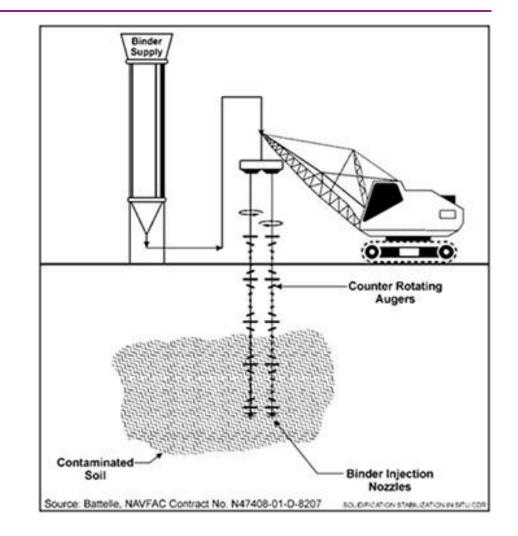
Evonik Soil & Groundwater Remediation

remediation@evonik.com

www.evonik.com/remediation

Overview

- Technology Overview
 - -ISS
 - -ISCO
- Why Combine?
 - -Results
- Effects of Water
- Summary


In Situ Solidification and Stabilization

What it is:

- Use of soil mixing to blend binding agent(s) with contaminated soils
- Methods:
 - Stabilization:
 - -Chemical processes that reduce leachability

- Solidification:

- Decreasing of surface area, hydraulic conductivity, effective porosity
- Increasing compressive strength

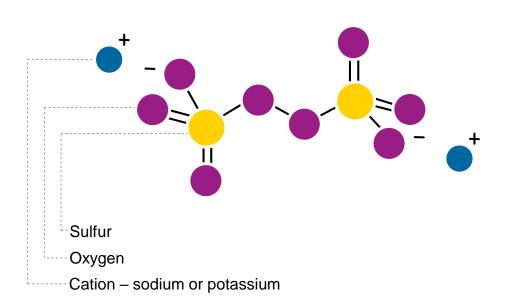
Common Objectives of ISS

- 1. Reduced hydraulic conductivity
 - 2-3 orders of magnitude below native soils
 - $-1 \times 10^{-6} \text{ cm/sec}$
- 2. Unconfined Compressive Strength (UCS)
 - "Workable" ~20-60 psi
 - Hardened
 - ISS often targets 50 psi
- 3. Lower contaminant flux and leachate concentrations

General Relationship between Soil Consistency and
Unconfined Compressive Strength

	Unconfined Compressive Strength (UCS) Ranges			
Consistency	psi		kPa (KN/m²)	
	Low	High	Low	High
Very soft	0	3	0	24
Soft	3	7	24	48
Medium	7	14	48	96
Stiff	14	28	96	192
Very Stiff	28	56	192	383
Hard	>56		>383	

Typical target range for "workable" soils ~20-60 psi


In Situ Chemical Oxidation

- What it is:
 - Adding thermodynamically powerful electron accepters to transform organic contaminants of concern via an oxidation pathway
 - Applied via injection, backfill emplacement or <u>soil mixing</u>
- Objectives:
 - Contaminant destruction
 - Reduced risk from less contaminant mass and lower concentrations

All Klozur[®] persulfates release the persulfate anion

- Sodium and potassium persulfate are used in environmental remediation applications
- A strong oxidant
- Activation results in the formation of oxidative and reductive radicals
- Applicable across a broad range of contaminants
- Extended subsurface lifetime (weeks to months)
- Little to no gas evolution

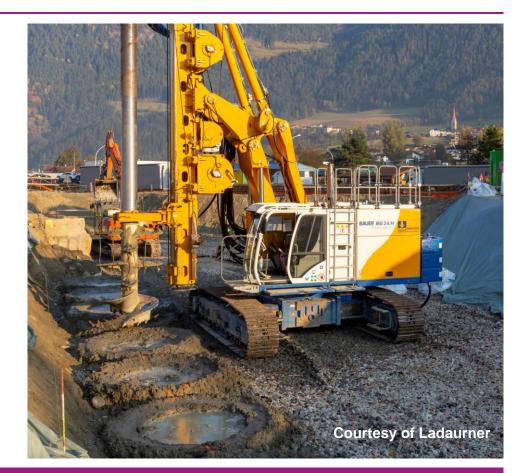
Free Radical Chemistry:

Persulfates produce free radicals in many diverse reaction situations

 $S_2O_8^{-2}$ + activator \longrightarrow SO_4^{-1} + (SO_4^{-1} or SO_4^{-2})

Activation produces a radical which is more powerful and kinetically fast

Klozur[®] Persulfate Degradation Pathways


PCE, TCE, DCE and VC		
	Carbon Tetrachloride	
Chlorobenzenes	1,1,1-Trichloroethane	
Phenols	Dichloroethanes	
Salaat Bastiaidas		
Select resticides	Select Pesticides	
Select Fluorinated Compounds	Salaat Enargatias	
PCBs	Select Energetics	
Select Energetics		
_		
ethous. Alkaline, flyurogen Peroxide, and		
Chelate		
	Select Pesticides Select Fluorinated Compounds	

Combining the Reagents

- Common ISS reagents create alkaline activated persulfate
 - Portland cement (significant alkali)
 - Blast furnace slag (alkali)
 - Cement kiln dust (significant alkali)

 Adding sodium persulfate to ISS has shown to be beneficial

Evonik Active Oxygens LLC ("Evonik") is the owner of U.S. Patents No: 7,576,254, US App 62/890,098 and their foreign equivalents. The purchase of Evonik's Klozur[®] persulfate includes with it, the grant of a limited license under the foregoing patent at no additional cost to the buyer.

"ISCO-ISS": Benefits of Adding ISS reagents to ISCO

- Control over post-soil mixing geotechnical characteristics during a soil mixing application
 - -Redevelopment
 - Post application monitoring
- Second treatment (combined remedy)
 - Solidification and stabilization from ISS after destruction of ISCO

Former Dry Cleaner:

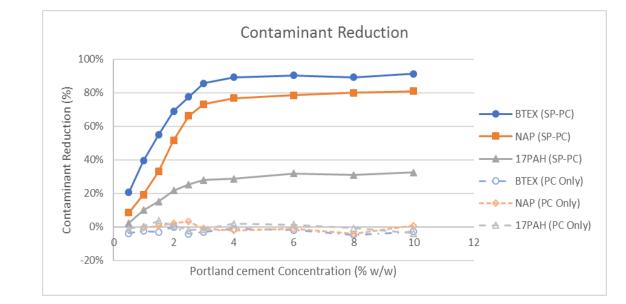
- Klozur SP: 1% or 2% w/w with Soil
- Portland cement: 4% w/w with Soil
- PCE: 94% Destruction
- Soil solidified and site ready for redevelopment

Courtesy of Hamp Mathews

"ISS w/ ISCO": Benefits of adding Sodium Persulfate during ISS

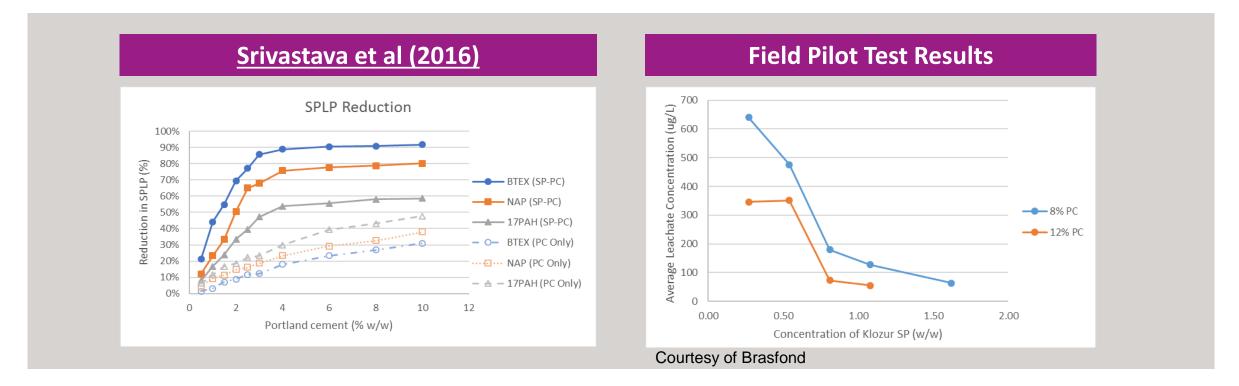
- 1. Contaminant destruction reduces long term risk
- 2. Lower leachate concentrations
- 3. Higher compressive soil strengths
- 4. Lower hydraulic conductivities
- 5. Less soil bulking

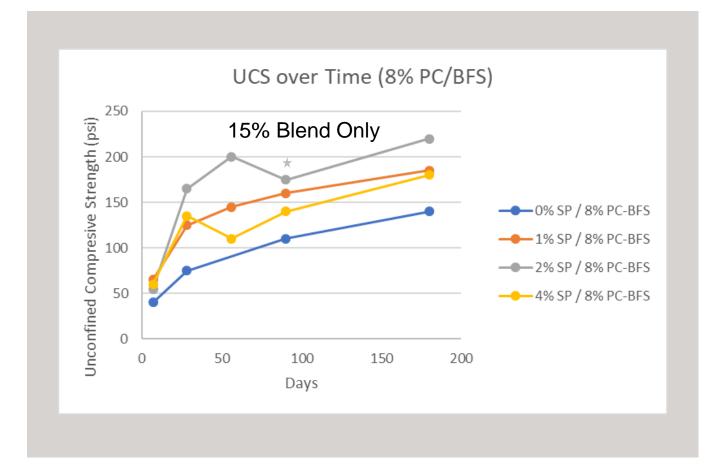
Unless otherwise noted the following are results from inhouse Evonik testing on contaminated soils



Contaminant Destruction

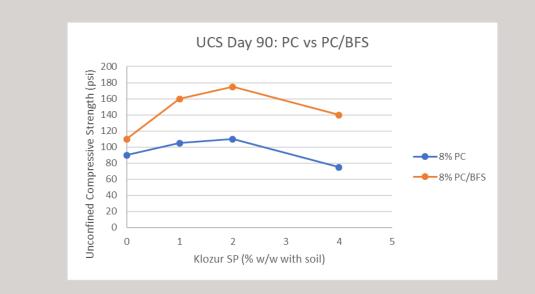
Srivastava et al (2016), J. Environ Chem. Engineering, 4, 2857-2864


- 1. MGP impacted soils
 - >36,900 mg/Kg TPH
 - ~6,800 mg/Kg BTEX
 - ~13,400 mg/Kg Naphthalene (Nap)
 - ~16,900 mg/Kg 17 PAHs (not including Nap)
- 2. Klozur[®] SP: Portland Cement (PC) ratio (1:2 w/w)
 - PC facilitates alkaline persulfate activation
- 3. ISCO:
 - Persulfate underdosed => targeting partial TPH treatment
 - Preferential treatment of soluble contaminants


Lower Leachate Concentrations

- Decreasing leachate concentrations observed with increasing sodium persulfate addition
- ISS w/ sodium persulfate had significantly lower leachate concentrations compared to ISS only

Compressive Strength Over 180 Days


- 1. Adding ISCO with ISS can result in greater UCS than ISS reagents only
- 8% BFS blend with Klozur[®] SP was approximately the same strength as 15% BFS blend only

Higher Compressive Strength

- Typically observe adding up to 2% sodium persulfate gives higher compressive soil strength
- Above 2%: results can vary

	8% PC		8% PC/BFS	
Klozur® SP (% w/w soil)	Day 90 UCS (psi)	% of ISS only	Day 90 UCS (psi)	% of ISS only
0	90	100%	110	100%
1	105	117%	160	145%
2	110	122%	175	159%
4	75	83%	140	127%

Lower Hydraulic Conductivities with Increasing Sodium Persulfate

Field Pilot Test Results 1.00E-05 Average Hydraulic Conductivity (cm/sec) 1.00E-06 1.00E-07 0 0.2 0.4 0.6 0.8 1.2 1.4 1.8 1 1.6 Weight Percent Klozur SP Added (% w/w)

Courtesy of Brasfond

- Adding reagents and soil mixing results in bulking of soil
- Effects of lower HC and higher UCS can be used to decrease total quantity of reagents needed to achieve remedial goals
- ISS w/ sodium persulfate typically results in less bulking of soil
 - Potentially significant cost savings

Even vadose zones can have significant water content

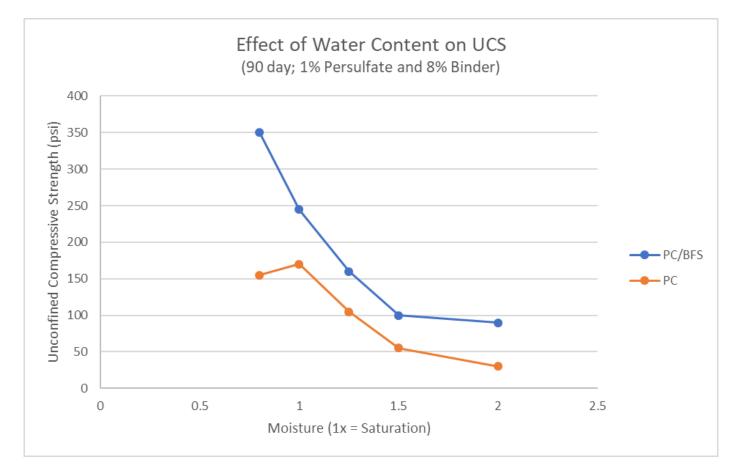
Material	Avg Specific Yield	Avg Specific Retention	
Clay	2%	98%	
Sandy Clay	7%	93%	
Sand	21% to 27%	73% to 79%	
Source: Fetter 3rd Ed 19	994		

Specific Yield (%) + Specific Retention (%) = 100 % of a Pore Volume

<u>Specific Yield:</u> % of Pore Volume that will drain by gravity <u>Specific Retention</u>: % of Pore Volume that is retained by soils after gravity drainage

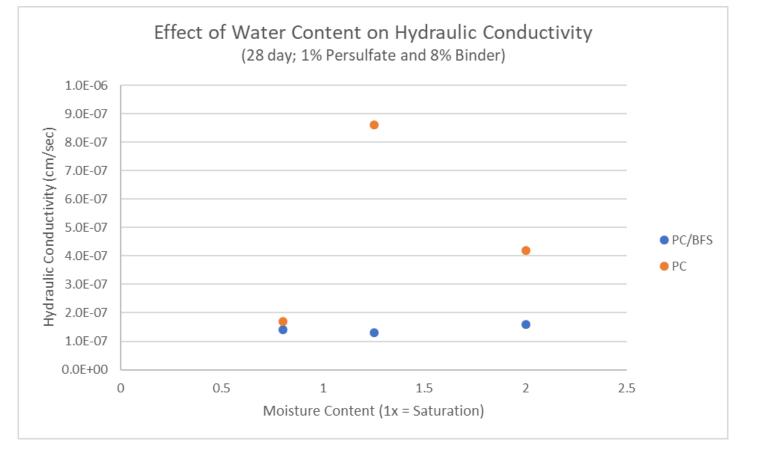
Talking about Water

- Pore volumes
- Moisture Content
 - Dry soil (% w/w)
 - Wet soil (% w/w)
- Ratio to binder
 - Concrete ~0.5

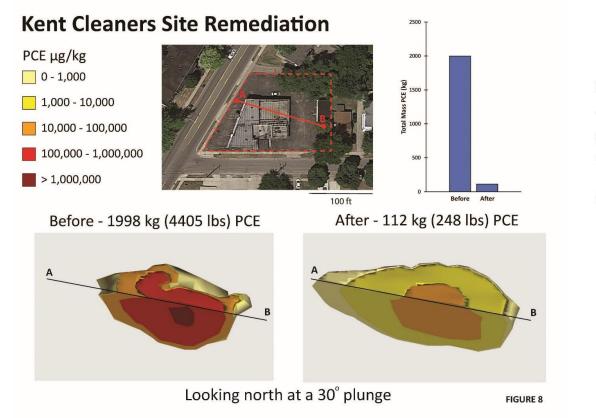

Pore W	Water Weight	Moisture Content (% w/w)		Binder ¹ Ratio	% of Total ¹
	(lbs)	Dry	Wet	ratio	
0.5	10.9	10%	9%	1.65	8%
0.75	16.3	15%	13%	2.48	12%
1	21.8	20%	17%	3.31	16%
1.25	27.3	25%	20%	4.14	19%
2	43.7	40%	28%	6.62	31%
Notes: Assume 110 lb/ft3 soil dry bulk density, 35% porosity, 6% Binder 2% SP					
	1. Dry soil weight				

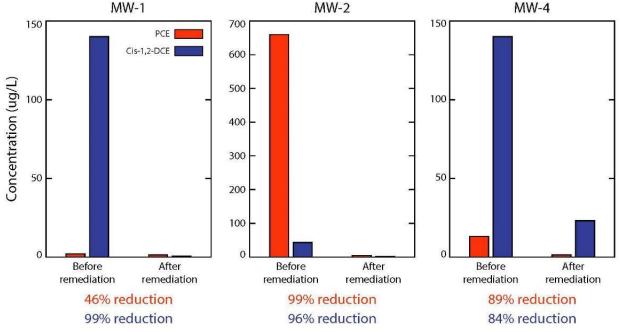
Works out to 80-85 g SP/L of excess water

Water Content


- 1. Increasing water content resulted in decreased UCS
- 2. BFS blend stronger than PC only
- 3. PC only 0.8x and 1x very similar
- 4. Most points above 50 psi
 - Had this been an actual site,
 <8% binder would have been used

Moisture on Hydraulic Conductivity


- Moisture had marginal to no impact on 28 Day hydraulic conductivity
 - -Slight impact to Portland cement
 - -PC/BFS very consistent
- Results may be soil specific



Former Dry Cleaner Site: Kent Cleaners in Michigan

- Klozur SP: 1% or 2% w/w with Soil
- Portland cement: 4% w/w with Soil

- ISS and ISCO are to mature remediation technologies with each having been used for decades
 - ISCO: Contaminant destruction
 - ISS: Reduction in contaminant flux (solidification/stabilization)
- Technologies can be combined
 - ISCO: Adding ISS gives geotechnical strength to site after soil mixing
 - ISS: Adding ISCO:
 - Reduces long term risk due to contaminant destruction
 - Lowers leachate concentration
 - Lower leachate concentrations
 - Higher compressive soil strengths
 - Lower hydraulic conductivities
 - Less soil bulking
- Water content is an important parameter and water existing in soil needs to be considered

Questions?

Brant Smith, PE, Ph.D Director of Technology Evonik Active Oxygens, LLC brant.smith@evonik.com

Evonik Active Oxygens, LLC Soil & Groundwater Remediation remediation@evonik.com www.evonik.com/remediation

