Samantha Murphy Staff Hydrogeologist

June 3, 2021

PFAS Risk in the Oil and Gas Industry Virtual EnviroTech 2021

Context and Outline

- Firefighting Foam 101
 - Lessons Learned
 - Recommendations

Per- and polyfluoroalkyl substances

- "Forever Chemicals"
- Emerging contaminants of concern due to persistence, bioaccumulation, and potential toxicity
- Health impacts for high levels of exposure may include reproductive and developmental impacts, endocrine system disruption, lowered immune system, possibly carcinogenic
- Regulatory framework in Canada is rapidly evolving

Perfluorooctanoic sulfonate (PFOS) molecule structure (from Jynto, CC0, via Wikimedia Commons https://commons.wikimedia.org/wiki/File:Perfluorooctanesulfonic-acid-3D-balls.png)

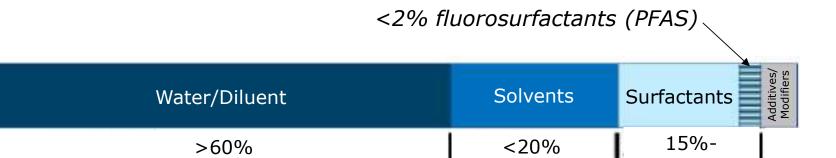
Recent research on PFAS compounds link exposure to certain PFAS compounds to worse COVID-19 outcomes (photo from Chemistry World https://www.chemistryworld.com/news/pfas-exposure-found-to-increase-risk-of-severe-covid-19/4012992.article)

селоуиз

Firefighting Foam 101

селоуиз

PFAS in Firefighting Foam

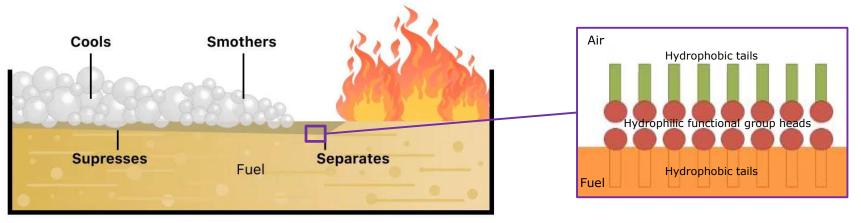

- Active ingredients in aqueous filmforming foam (AFFF) used to extinguish Class B fires (liquid hydrocarbon) and suppress hazardous vapours
- Defence and airline industries are ahead of Oil and Gas when it comes to managing PFAS risk from AFFF
- O&G facilities that rely on AFFF for emergency response include processing units, extraction plants, pipeline and tank terminals and retail facilities
- Municipal fire-fighters also use AFFF (3rd party risk)

www.springwellwater.com/how-afff-firefighting-foam-can-pollute-drinking-water/

What's in Aqueous Film-Forming Foam (AFFF)

Proprietary mixture of water or other diluent, solvents, and surfactants

Composition of a typical 3% Modern AFFF concentrate


18%

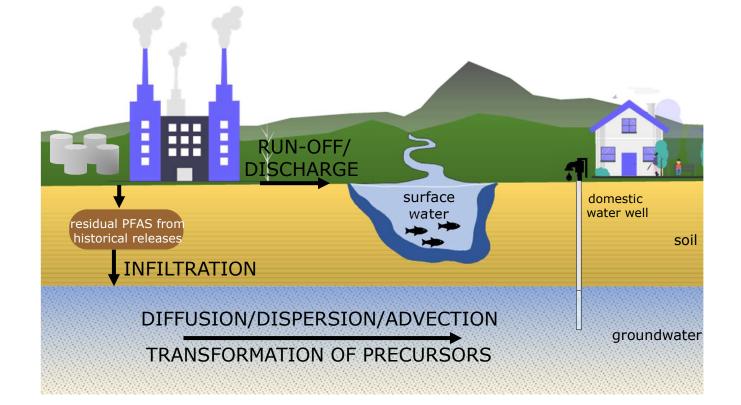
ITRC - Firefighting Foams - pfas-1.itrcweb.org/3-firefighting-foams/

Селоvus	1 6
---------	-----

How AFFF Works

- Mixes with air and water to create foam
- Foam blanket cools and smothers fire
- PFAS film spreads over surface of fuel with hydrophobic tails oriented outward and hydrophilic functional group heads oriented inward
- Film creates a barrier to suppress vapor and prevent reignition

https://www.necaaae.org/assets/docs/3.29.19%201030%20CocTerr_NEC-AAEs-Airports-Conference-PPT-Draft-030419%20-%20Richart.pdf



Types of Class B Firefighting Foams

		Common Name	Technical Classification	PFAS Manufacturing Process	PFAS Content
Risk		"C8"	Legacy PFOS AFFF a.k.a. 3M Lightwater (1960s-2002)	Electrochemical Fluorination	Long-chain PFAS compounds (PFOS and other PFSAs)
	68		Legacy Fluorotelomer AFFF (1970's – 2016)	Fluorotelomerization	Long-chain PFAS compounds (LC-PFCA precursors)
Environmental		"C6" Modern Fluorotelomer AFFF (2016 – Present)		Fluorotelomerization	Short-chain PFAS compounds (trace LC-PFCAs)
Ш		"F3"	Fluorine-Free Foam	n/a	Do not contain PFAS

Modified from ITRC https://pfas-1.itrcweb.org/3-firefighting-foams/#3_1

Environmental Pathways

Lessons Learned

селоүиş

June 3, 2021

Sampling & Analysis

Challenges:

- Cross contamination potential is high
- Sampling waste must be disposed of properly
- High costs, long turnaround times
- Limited sampling suite via standard methods (i.e. sum of PFAS is not equal to Total PFAS!)

Lessons:

- Follow sampling protocols and develop rigorous QA/QC program (blanks!)
- Manage soil and purge water
- Build buffer into Cost, Schedule, and Budget (don't overcommit)
- Understand analytical options and limitations

Banned materials for PFAS investigations include sunscreen, insect repellent, Sharpie markers, latex gloves, water-resistant clothing, blue ice, and cosmetics (photo from LimnoTech https://www.limno.com/sampling-for-pfas-requires-caution/)

Limiting Migration

Challenges:

- Soluble in oil and water migration potential
- Adsorb to soil, concrete and equipment (can act as "reservoirs")
- Managing weather events

Lessons:

- Clean up spent foam ASAP
- Understand and limit drainage
- Decontaminate surfaces that contacted PFAS (and be prepared to manage rinse-water)
- Ensure adequate storage

Spent AFFF from a nearby air force base rings the shoreline of a small lake in Michigan (photo from Michigan Bridge https://www.bridgemi.com/michigan-environment-watch/environmentalists-outraged-michigan-warning-about-pfas-went-unheeded)

Characterizing AFFF Source

Challenges:

- AFFF formulations are proprietary, compositions vary from batch to batch
- PFAS precursors transform soon after AFFF use - limited ways to characterize PFAS "Dark Matter"
- Changes in concentration can be easily misinterpreted

Lessons:

- Collect post-response samples close to source where feasible
- Understand precursor potential / uncertainties
- Consider supplementary lab analyses (TOF and/or TOPS)

COMPOSITION/INFORMATION ON INGREDIENTS

This product is a mixture.

Component	CAS Number	Concentration*
Sodium decyl sulfate	142-87-0	1 - 5%
Alkylpolyglycoside	132778-08-6	1 - 5%
Dipropylene Glycol Monomethyl Ether	34590-94-8	1 - 5%

*Exact concentration withheld as trade secret.

Composition / Information on Ingredients Components CAS # Percent Butyl Carbitol 112-34-5 10 - 20 Other components below reportable levels 80 - 90

Information provided in Safety Data Sheets (SDS) for AFFF products generally do not specify PFAS compound concentrations.

Poly- and per- fluorinated alkyl substances (PFASs)				
Perfluoroalkyl substances Polyfluoroalkyl substances				
	alkyl acids AAs)		pnamide- containing precursors , FOSA, N-EtFOSE)	Fluorotelomer precursors (e.g., 6:2 FtS)
PFSAs (e.g., PFOS)	PFCAs (e.g., PFOA)	<u> </u>	Degrada	ation

Source: Citizens for Safe Water Around Badger https://cswab.org/wp-content/uploads/2018/10/PFAS-CSWAB-Presentation-Oct-2018.pdf

селоучия	June 3, 2021

Disposal of AFFF and impacted liquids and solids

Challenges:

- PFAS are difficult to destroy
- Standards for testing PFAS in waste are still under development

Lessons:

- Consider US EPA Interim Guidance on PFAS Destruction and Disposal (storage, downhole disposal, hazardous waste landfills, industrial landfills, thermal treatment)
- Understand costs and risks associated with disposal methods before making decision

Table 1-1. Destruction and Disposal Technologies Discussed in This Guidance, with Examples of PFAS-Containing Materials

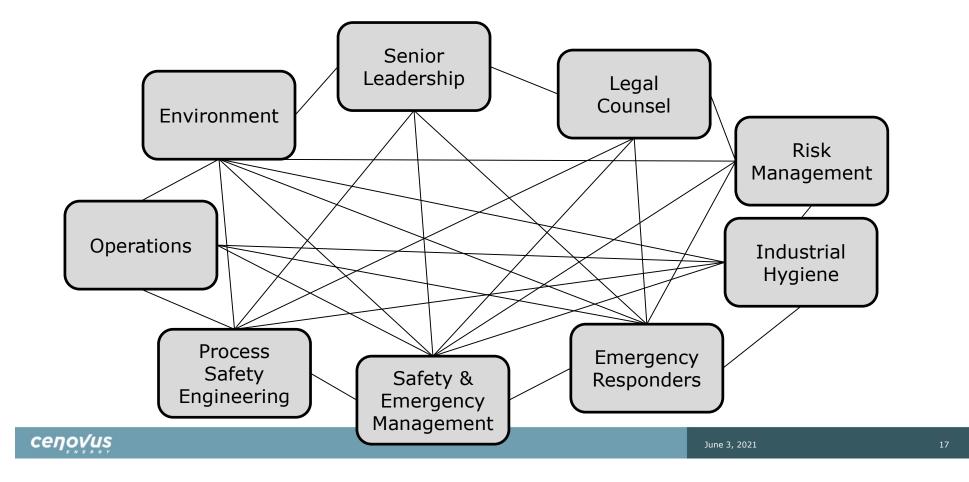
Destruction and Disposal Technology, by Physical Phase of Materials	Examples of PFAS-Containing Materials (Within the Scope of the FY 2020 NDAA) That Could Be Managed Using These Technologies		
Solid <mark>phase:</mark> Landfill disposal Thermal treatment	Drinking water, groundwater, and wastewater treatment residuals Biosolids Spent granular activated carbon (GAC) Ion exchange resins Filters High-pressure membranes Air waste stream treatment residuals Spent GAC Fiy ash Contaminated soil End-of-life products (e.g., textiles)		
Liquid phase: Underground injection Thermal treatment	Landfill leachate Aqueous film-forming foam End-of-life products (e.g., spent cleaning solvents) Pollution control residuals (e.g., concentrates) from PFAS production and use		
Gas phase: Thermal treatment	Landfill gas Emissions from manufacture, use, or destruction		

Source: United States Environmental Protection Agency. 2020. Interim Guidance on the Destruction and Disposal of Perfluoroalkyl and Polyfluoroalkyl Substances and Materials Containing Perfluoroalkyl and Polyfluoroalkyl Substances. https://beta.regulations.gov/document/EPA-HQ-OLEM-2020-0527-0002

Recommendations

селоуиз

Step 1: Learn, Educate, Repeat


- Interstate Technology Regulatory Council PFAS Site
 - Frequently updated global regulatory guidelines for soil and water
 - Fact Sheets, training videos, toolkits etc.
- Webinars, Conference presentations
- Peer-reviewed journal articles
- Government guidance

Be cautious with information from foam manufacturers/distributors, media articles, environmental NGOs, and industry advocacy groups

Step 2: Collaborate with Internal Stakeholders

Step 3: Develop Mitigations

- Develop best practices for AFFF storage, use, and containment
- Update ERP, tactical, and spill response documents to specifically address AFFF containment and clean-up post-incident
- Consider using lower risk firefighting foams

cenovus

038,7-365-86514-496805--,00.html

Contact

Thank you!

Questions, comments, concerns? Samantha.Murphy@cenovus.com