Improving Air Quality and Reducing Fugitive Emissions Through Continuous Monitoring Technology

ESAA EnviroTech Conference June 3, 2021

Presenters

Alex MacGregor CEO, Qube Technologies Alex.macgregor @qubeiot.com

Kerry Mowbray Manager, HSE, Regulatory and Land, SECURE Energy Services

Agenda

04 Future improvements

Understanding odours from oil and gas operations

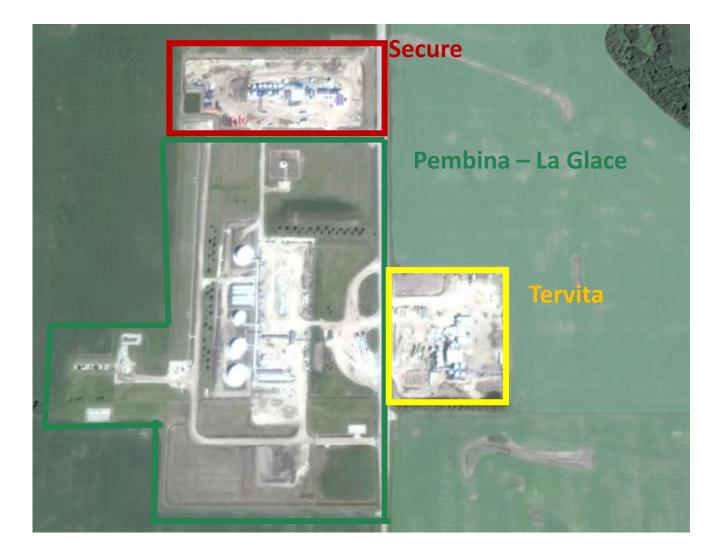
Overview of odours from oil and gas facilities

- Most odours generated at oil and gas facilities are typically harmless however, they do impact air quality and nearby residents' quality of life
- Typical Odours from oil and gas facilities include:
 - Hydrogen sulfide (H₂S)
 - Volatile organic compounds (VOCs)
 - Sulfur dioxide (SO₂)
- Odours often arise from intermittent activities such as tank unloading and episodic venting making it difficult to determine the root cause of the odour

Common odour and their detection thresholds

Gas	Odour detection threshold
H ₂ S	~8 ppb
SO ₂	~670 ppb
Mercaptan	~2 ppb
Heptane	~150 ppm
Benzene	~61 ppm
Toluene	~160 ppm
Ethylbenzene	~2.3 ppm
Xylene	~0.8 ppm

Understanding the La Glace area


Background

- La Glace is a small town located about 45 minutes northwest of Grand Prairie in an area of dense petroleum development which has led to increased emissions
- Numerous companies have overlapping operations in the area including SECURE, Pembina, and Ovintiv
- Odour complaints have been lodged by nearby landowners as a result of various operational activities leading to challenging stakeholder relations
- The Alberta Energy Regulator (AER) is responsible for investigating odour complaints and enforcing complaint protocols

Aerial view of La Glace facilities

Challenges associated with locating the source of odours

Challenges

- Many events which result in off-lease odours are episodic in nature
- Follow-up inspections from the AER often occur well after the odour has dissipated
 - Odour complaint and AER inspection may occur on different days
- Most technologies have pitfalls:
 - Intermittent
 - Expensive
 - Do not collect local meteorological data

Agenda

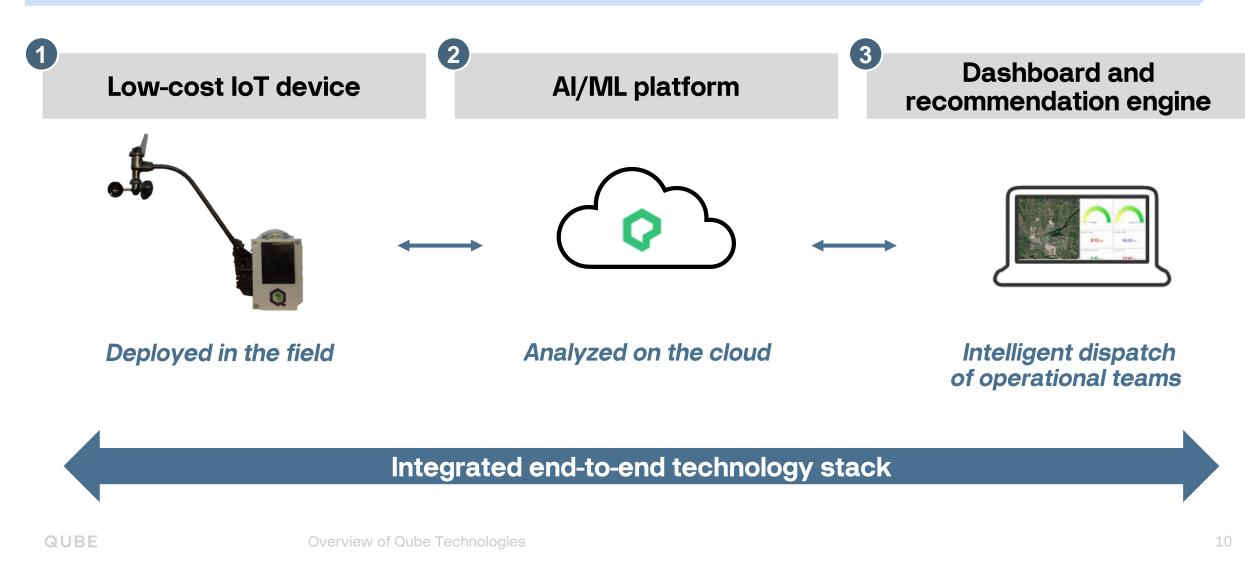
01 Background

02 Technology

04 Future improvements

Technologies used to source odour complaints

	Low-cost, fixed sensors	OGI cameras	Air trailer	Human senses
Overview	 Fixed gas detectors using low- cost metal oxide or electrochemical sensors 	 Thermal imaging technology Produces visual image of plumes of gas leaks 	 Laser based gas analyzers that measure gas concentration at the ppb level 	 Smell, sight and sound is used to identify the presence of an odour
Limitations	 Sensors are sensitive to temperature and humidity and thus need to be calibrated Not as accurate as gas analyzers 	 Snapshot measurement Requires skilled operator Only measures methane not VOCs 	 Expensive; limits the number of air trailers and duration for which they can be deployed Unable to identify location of emissions 	 Subjective Snapshot in time Inspection often occurs on different day than the complaint was lodged



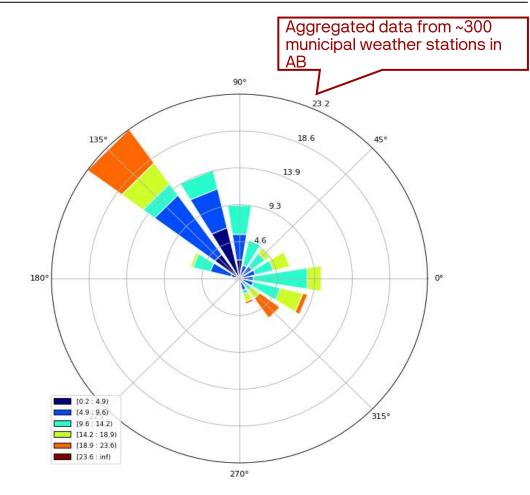
Our mission

To reduce emissions from primary industries through continuous monitoring and artificial intelligence

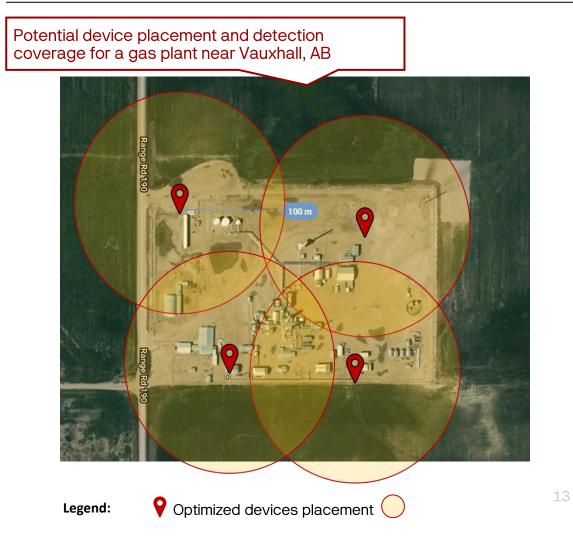
Low-cost, Continuous, AI based solution for environmental surveillance

Operator Dashboard

Detailed specifications of Qube's device


Gas sensors	Resolution	Range
CH ₄	≤1 ppm	0 – 10,000 ppm
NO ₂	≤10 ppb	0 – 10,000 ppb
H_2S	≤10 ppb	0 – 10,000 ppb
VOC	≤50 ppb	0 – 10,000 ppb
SO ₂	≤1 ppb	0 – 2,000 ppb

Environmental sensor	Resolution	Range
Thermometer	≤0.50 °C	-55 to 125 °C
Barometer	≤0.18 Pa	300 –1,100 hPa
Humidity	±3 %	0 - 100%
Anemometer	1 Km/h, 1°	0 – 230 Km/h, 0 - 360°
GPS	±20 m	NA



Qube devices require wind and can detect emissions up to >100m from a source

Alberta has a prevailing wind from the NW

Each device has a detection coverage of ~100m

Agenda

01 Background

04 Future improvements

Understanding odour investigation process

AER Procedure

- Odour investigation
 - Specify data collection method e.g. OGI camera
 - Record complaint location
 - Record presence or absence of odours

Evidence collection

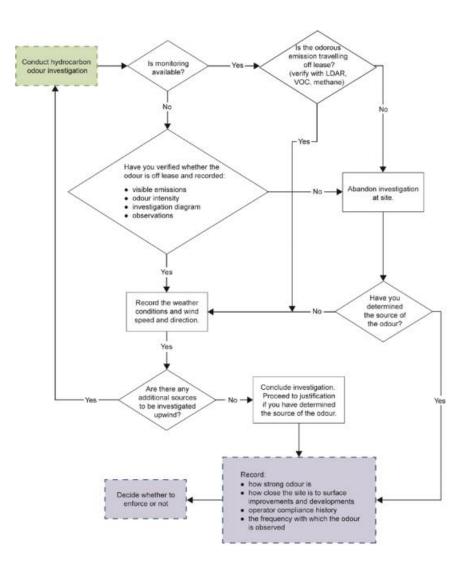
- Draw birds eye view of equipment on site (baseline map)
- Walk around site and collect evidence i.e., instrument readings, methane concentrations, windspeed and wind direction
- Presenting evidence 3
 - Plot point-in-time measurements collected at time of inspection on map

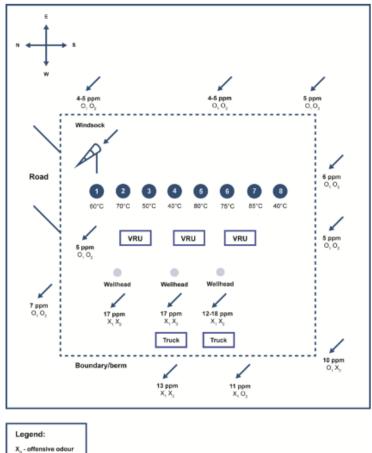
Qube Procedure

Odour investigation

- Collect gas concentration and windspeed data continuously using Qube's loT device
- Request additional operational data from operator

Evidence collection

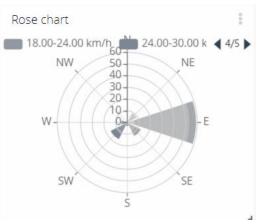

- Locate all equipment via satellite image of site and mark locations of Qube devices
- Collect continuous gas concentration and windspeed data



Presenting evidence

- Isolate peaks concentration over time period odour complaint occurred
- Plot the peak concentration and wind data on the satellite image of the site

Odour management protocols from AER



Example baseline maps from Qube's deployments

- 1. Identify and record peaks in gas concentration in this example, we are looking at the VOC sensor
 - Sensor 4 = 2.3 ppm
- 2. Record historical wind direction at time of peak
 - Wind direction = 100 degrees (ESE)

Creating a baseline map from continuous monitoring data

Findings

- Small peak in VOC concentration was identified on April 29th at 6 am on sensor in NW corner
- Wind direction was from ESE
- Based on wind direction, emission was likely coming from SECURE facility, however, it was below the odour threshold and no complaint was filed with the AER
- Outcome: monitor for future peaks in gas concentration at same sensor and record wind direction

Agenda

01 Background



04 **Future improvements**

Localization model to automatically identify source

Possible to identify multiple leaks and identify probable sources

Qube's Testing Facility – Accelerating Development of Quantification Model

SECURE ENERGY