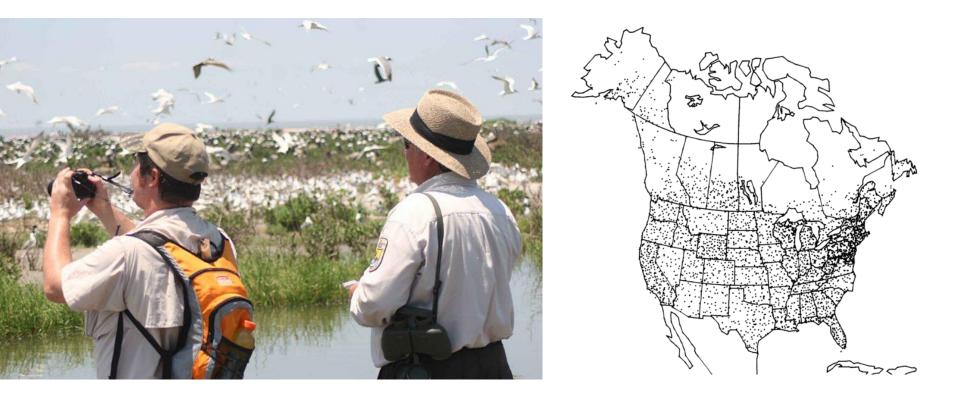
Applying eDNA for Species Detection: Tips for Successful Integration

EnviroTech 2021 Danielle Bourque – Molecular Ecologist SLR Consulting (Canada) Ltd.

SLR

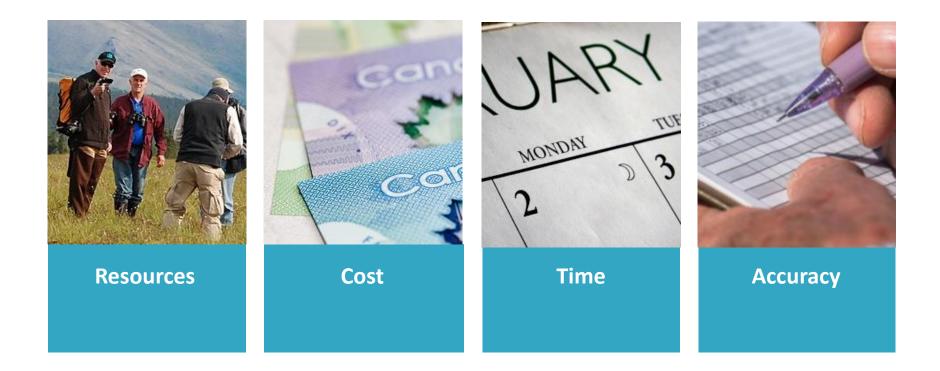
global environmental and advisory solutions


1

Overview

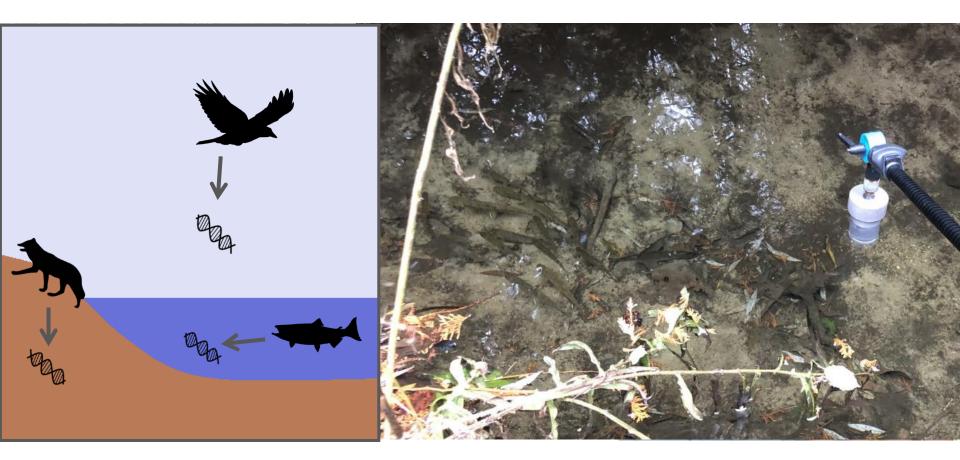
- Environmental Biomonitoring & Conventional Techniques
- What is eDNA?
- How is eDNA testing conducted?
- eDNA Benefits
- Tips for Implementing eDNA Surveys
- Questions/Comments

Environmental Biomonitoring Programs

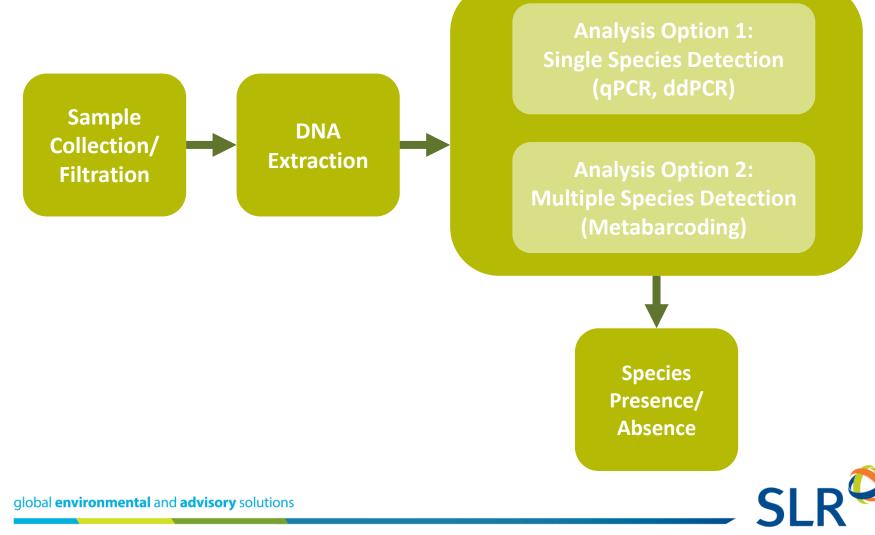


Environmental Biomonitoring Programs

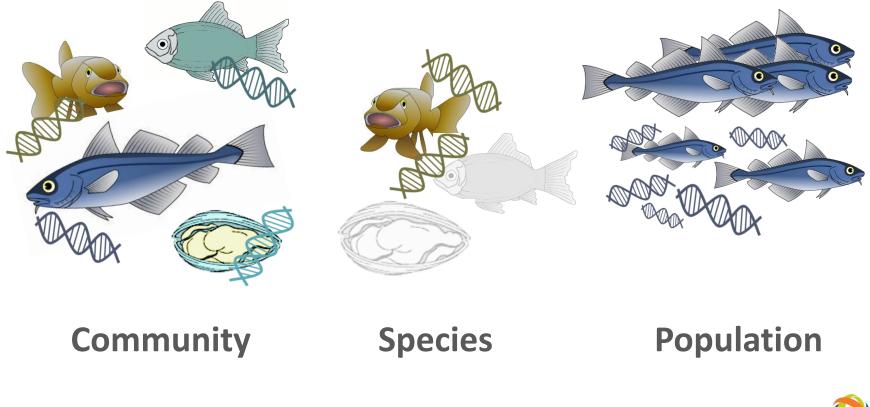
Conventional Techniques – Potential Drawbacks



Environmental Biomonitoring Programs

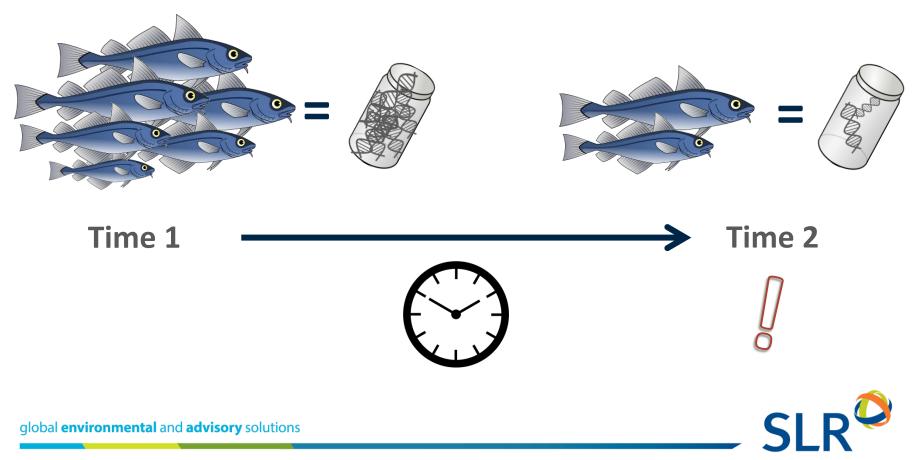


What is "eDNA?"



How is eDNA Testing Conducted?

eDNA for Biomonitoring


• eDNA can characterize diversity on several scales:

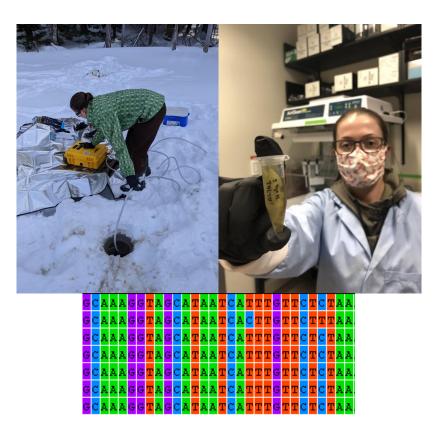
eDNA for Biomonitoring

• eDNA can also reflect seasonal or temporal changes in relative abundance:

Other Benefits

- Can eliminate the need for collection permits
- Suitable for rare, invasive, or elusive species detection
 - Early warning system
- Increasing application in industry and government sectors:
 - **Department of Fisheries and Oceans (DFO):** eDNA Guidance Doc + Reporting Template

Guidance on the Use of Targeted Environmental DNA (eDNA) Analysis for the Management of Aquatic Invasive Species and Species at Risk Cathryn Abbott ^{1*} , Mark Coulson ^{2*} , Nellie Gagné ^{3*} , Anaïs Lacoursière-Roussel ^{4*} , Geneviève J. Parent ^{5*} , Robert Bajno ⁶ , Charise Dietrich ² , and Shannan May-McNally ²						
Fisheries and Oceans Canada			eDNA Reporting Template			
			I. eDNA Testing Sample Submission Information			
	Fisheries and Oceans Canada	Report Title:				
*		Project Number			Date of Final Reporting:	
		Service Provider Information	Type: Contact Name Address: Contact Phon		Requesting Organization Information	Organization Name: Contact Name: Contact Phone: Contact Email:
			Contact Emai	ATION / CERTIFICATION: bjectives, Rationale, and Main Finding(s) derive	d from both eDNA	samples and controls


eDNA Survey Design

Multiple Stages:

- Field
- Laboratory
- Data Analysis

Survey Aspects:

- Pilot Studies
- Field Collections/Sampling Design
- Assay Selection
- Results Interpretation
- Strengths and Limitations

eDNA Survey Design – Pilot Studies

- Allow clients to optimize eDNA methodologies before scaling up
- Other Benefits:
 - Opportunity to test the chosen analysis method on locally sourced specimen(s) or any subsequent sequence data, if available, to verify positive amplification/assay binding from a geographically relevant source
 - Gain further insight on the number of samples to collect based on site characteristics
 - Impact of seasonality on field collection, target species activity, eDNA persistence
 - Can alter DNA extraction and amplification techniques based on the pilot if environmental inhibition is encountered
 - Compare/contrast eDNA species detection to traditionally collected data
 - (e.g. Bat acoustic surveys, electrofishing, frog call surveys)

Questions to ask:

- What will you be collecting?
 - Water, Feces, Soil?

Questions to ask:

- How will you collect it?
 - Pump/Filter, Bottle, Collection Tubes?

Questions to ask:

- How will you preserve your samples in transport and before processing?
 - EtOH, silica gel, frozen?

Questions to ask:

• How will you prevent contamination when handling samples?

- Decontaminate all field gear with 10-50% bleach solution, Eliminase, etc. between surveys
- PPE & consumables: nitrile gloves, forceps, plastic bags, dedicated coolers/containers
- eDNA "Clean Rooms" (for post-collection processing)

Questions to ask:

- What field controls will you have?
 - E.g., Deionized water samples filtered onsite per day

Questions to ask:

- What is the waterbody type?
 - Wetland? Flowing river? Stagnant pond? Lake?

- Who are your target species?
 - What are their life histories? What time of year are they most active (i.e. shedding more eDNA)?

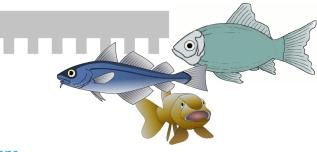
How many samples should you collect? What volume of water?

- What volume: will be limited by sediment loads and filter pore size
- Smaller pore sizes $(1.0 < 5 \mu m)$ will clog faster than larger pore sizes $(5 10 \mu M)$, but may capture smaller genetic materials
- How many: maximize spatial coverage if samples are limited, while noting any onsite activities or observations that may redirect sampling efforts

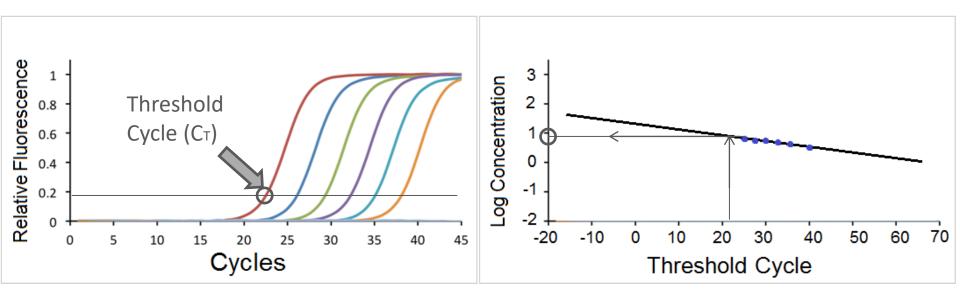
• What data should you record?

- Criticals: sample ID, location, date, site & sample photos, volume recovered, filter specs
- Extras: water quality metadata (pH, turbidity, DO, etc.)
- Standardization: DFO reporting sheet

eDNA Survey Design – What is Inhibition?

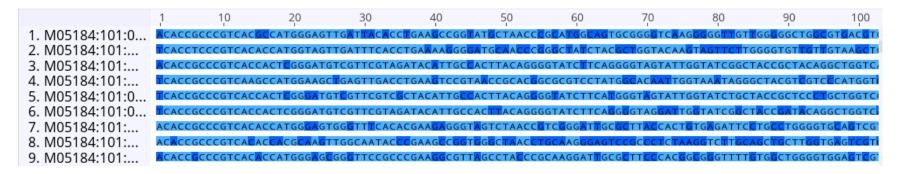

- **Sources:** organic compounds, enzymes, chemicals in the environment
 - Common in turbid waters, soil, feces
- Can adversely affect PCR (eDNA amplification) and ultimately species detection
- Can be addressed at both DNA extraction and/or PCR laboratory steps

eDNA Survey Design – Assay Selection


- Assays bind to the eDNA of the target species in a sample
 - What kind of assay(s) you will use depend on your goal:
- For single-species detection studies, these will be **qPCR assays**
 - sensitive, specific
 - Suitable for detection of a single, rare species (e.g. a SAR or early invader)
- For multi-species detection studies, these will be **metabarcoding assays**
 - Less specific: designed to bind to eDNA of multiple, related species
 - Suitable for the detection of species communities (e.g. fishes, amphibians, mammals)

25

eDNA Survey Design – Assay Selection



qPCR Data:

- Presence/absence and quantities of eDNA
 - Lower cycle number = more eDNA in the original sample
- Each assay has a **Limit of Detection** and a **Limit of Quantification** that specify the boundaries of target species detection by that assay (to prevent false positives)

eDNA Survey Design – Assay Selection

Metabarcode Data:

Thousands of sequences generated **per sample** \rightarrow bioinformatics processing \rightarrow species identifications (typically a 98% sequence match required)

- Bioinformatics pipelines: software algorithms that process raw sequence data
 - Pipelines are tailored to specific species groups and/or target genes
- Cannot be used for relative abundance estimates*

Results – Interpretations and Limitations

Positive Detections (Presence):

- Suggest the DNA of the target species is present at the sampling location at the time of collection
- Cannot distinguish living or dead organisms, age, sex*, or stationary vs. migratory (due to eDNA transport in water)
- Repeated spatial and temporal sampling efforts increase confidence in results
 - required for relative abundance estimations from eDNA
- Can inform where to direct traditional sampling methods
- False positives: avoided with field and laboratory controls

Negative Detections (Absence):

 Doesn't outright confirm species absence: must also consider environmental inhibitors, sampling effort; organism possibly too rare or below limits of detection with eDNA

Conclusions

- eDNA can **complement** and **inform** traditional sampling methods as a costeffective, **first-pass look** to direct further monitoring effort
- Applications of eDNA should be aware of its **strengths** and **limitations**
- Consult with experts (**Molecular Ecologists** and **Field Biologists**) before initiating biomonitoring based on interpreted eDNA results

SLR Consulting – Molecular Services

End-to-end eDNA surveys

- Customized survey design
- Informed field collections
- Laboratory analysis (single or multiple species) at the University of Guelph
- qPCR assay design available
- Guano/faecal, tissue, hair, water samples
- National team of Ecologists (Field & Molecular) for integrated results

SLR's eDNA Projects

- E-fishing vs. eDNA for Brook Trout stream detection
- eDNA Gear
 Comparison using
 Citizen Science
 (University of
 Guelph students)
- Research Study: qPCR vs. ddPCR vs. metabarcoding (ongoing)
- Other Applications: DNA tracers for groundwater/flow monitoring

THANK YOU!

Danielle Bourque Molecular Ecologist – SLR Consulting

t +1 416 910 9714
dbourque@slrconsulting.com
www.slrconsulting.com

