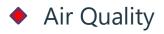
A Preliminary Empirical Study on the Influence of Rainfall on Urban Air Quality

Emmanuel Anglo Senior Associate Scientist Wood Environment & Infrastructure Solutions Calgary, Alberta

EnviroTech 2021, 2-3 June 2021

Background

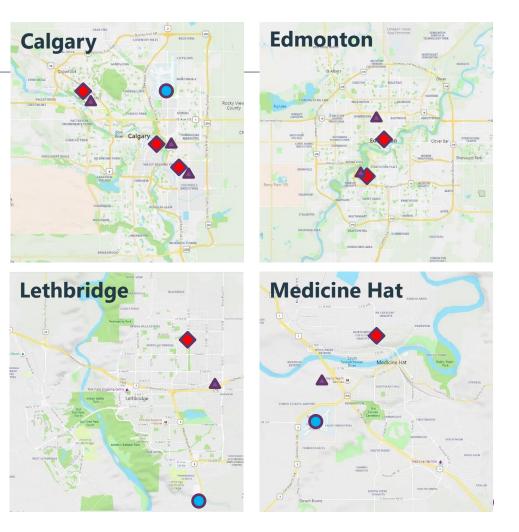

- Precipitation can theoretically improve air quality through scavenging or washout of pollutants
- Washout is quantified in dispersion modelling (CALPUFF) to calculate wet deposition rates, e. g. Potential Acid Input
- Although wet deposition is a pollutant sink, CALPUFF does not account for the decrease in concentration it causes
- Original study objective: can the effect of rainfall be incorporated in model predictions through regression equations?

Previous Studies

- Lab and field studies of washout efficiency of different pollutants
 - MacMahon and Denison (1979) compilation of washout coefficients
 - Larger particles more easily removed by rain than smaller particles and gases
 - Soluble gases like H_2S and SO_2 are more easily washed out
 - Most studies are in areas with higher concentrations and rainfall
 - $PM_{10} > SO_2 > NO_2 > CO > O_3$ (Yoo et al 2014)
- Studies on the topic are somewhat limited because hourly rainfall is not routinely measured

Stations

Finding hourly rainfall and cloudiness data near air quality stations is a challenge



A Rainfall

Cloudiness

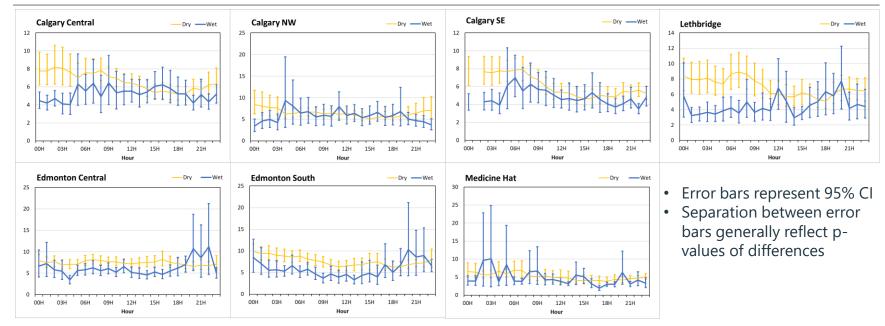
Data sources:

Air Quality: airdata.alberta.ca/reporting Calgary Rainfall: data.calgary.ca/Base-Maps/Rain-Gauge-Map Alberta Rainfall: acis.alberta.ca/weather-data-viewer.jsp Cloudiness: https://www.weatherstats.ca/

Data

- Hourly air quality data from urban Alberta stations (2015 – 2019)
- Hourly summer rainfall (May to September)

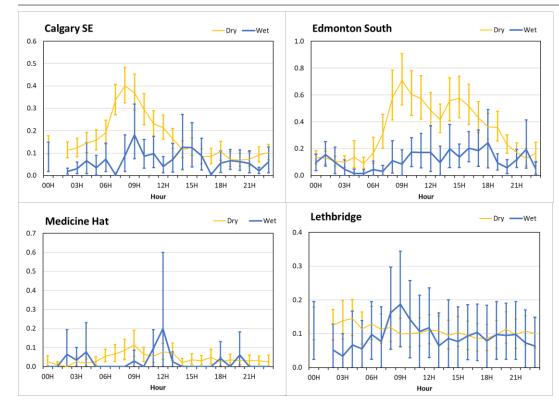
	PM _{2.5}	SO ₂	O ₃	NOx	NO ₂	NO	CO	THC	CH ₄	H_2S	$\rm NH_3$
Calgary NW	~		~	~	~	\checkmark	~	~	~		
Calgary Central	~		~	~	~	~	~	~	~		
Calgary SE	~	\checkmark	~	~	~	~	~	~	~	~	
Edmonton Central	~		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	~		
Edmonton South	~	~	~	~	~	~	~	~	~		
Medicine Hat	~	~	~	~	~	~	~	~			
Lethbridge	~	\checkmark	\checkmark	~	~	√	~	~	~	\checkmark	~


Methodology

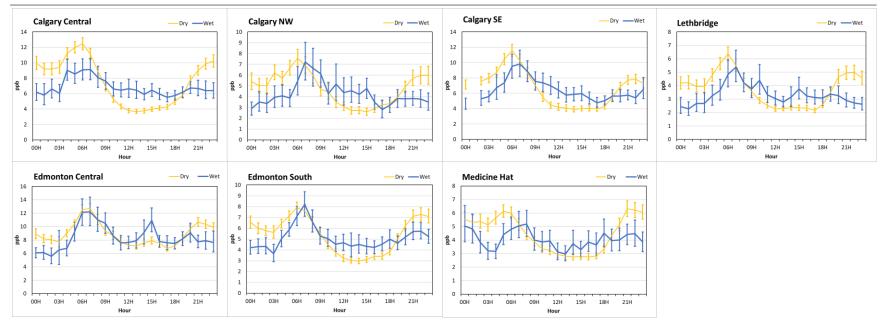
- Separate wet hours (hours with rain) from dry hours
- Calculate hourly average concentrations
- Limit comparisons to days with *some* rain
 - N wet hours ~ 5% N dry hours
 - Improves likelihood that emissions and other conditions are similar between the hours being compared
- Calculate 95% CI and p-values of differences using bootstrap resampling

Bootstrap Resampling - A Rough Description

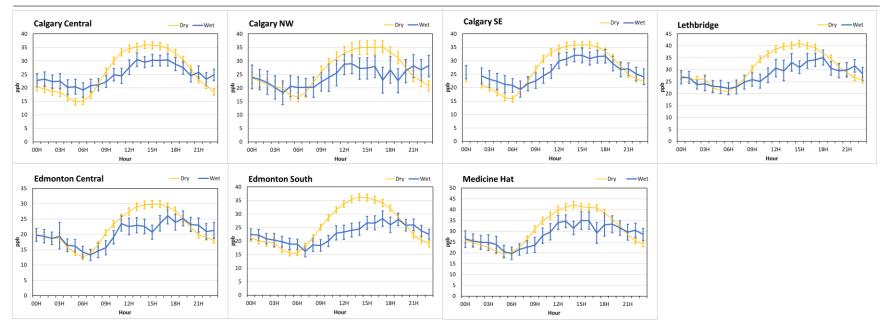
- Used when data are not normally distributed
- Estimates uncertainty in a statistical property (e.g., mean or standard error) by creating a large artificial population out of the original data, then repeatedly calculating that property from a sample of the artificial population
- For 95% CI of mean of data set with N values:
 - Randomly draw N values out of the data set, calculate mean of random values, record the value, repeat 10,000 times
 - Rank the 10,000 recorded values, CI will be the 250th and 9750th value
- For p-value of differences between the means of two data sets:
 - Combine the two data sets into one large set, randomly draw two sets each with same N as original sets, calculate difference of the means of each random set, record each value, repeat 10,000 times
 - P-value will be the number of values in the recorded differences that are larger than the original difference


Results – Dry vs Wet $PM_{2.5}$ (µg/m³)

• Dry concentrations generally higher than wet, with exceptions


8

Results – Dry vs Wet SO₂ (ppb)

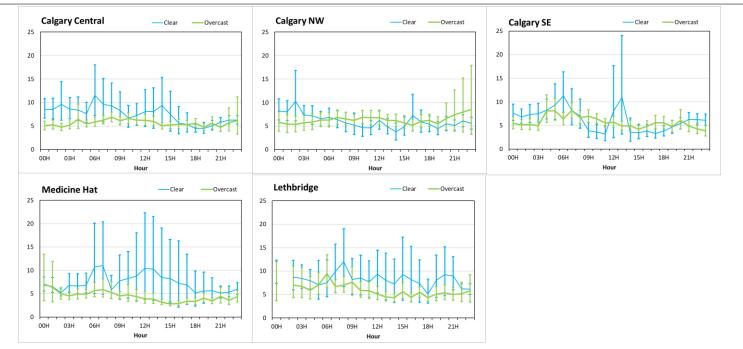

Dry SO₂ concentrations generally higher than wet, but not at low concentrations

Results – Dry vs Wet NO₂

• Dry concentrations higher than wet at night but *lower* during the day

Results – Dry vs Wet O₃

- Opposite pattern as NO_2 – dry concentrations lower than wet at night but higher during the day

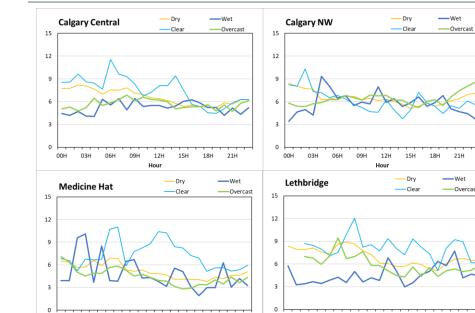

Ozone and NO₂ (Finlayson-Pitts and Pitts 2012)

- Daytime: emitted NO₂ dissociates in sunlight, forming NO and ozone
 - Cloudiness associated with rain reduces O₃ and increases NO₂
- At night:

 $NO_2 + O_3 \rightarrow NO_3 + O_2$ $NO_3 + NO_2 \rightarrow N_2O_5$ $N_2O_5 + H_2O \rightarrow 2HNO_3$

> Net effect is lower NO₂, more O₃ during rain

Effect of Cloudiness – PM_{2.5} (Dry hours only)

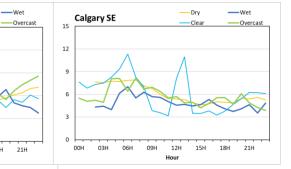

Mean $PM_{2.5}$ concentrations ($\mu g/m^3$) appear to be higher during clear skies

Clear vs. Overcast skies – PM_{2.5} (Dry hours only)

15H 18H 21H

09H 12H

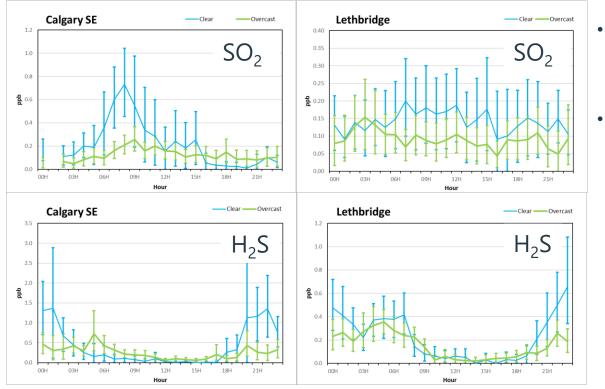
Hour



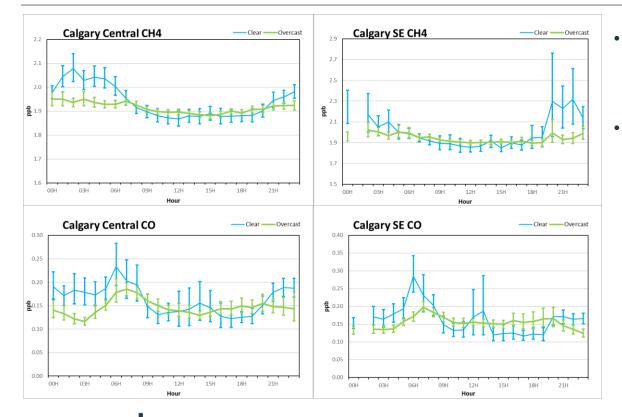
18H 21H

03H 06H

09H 12H 15H

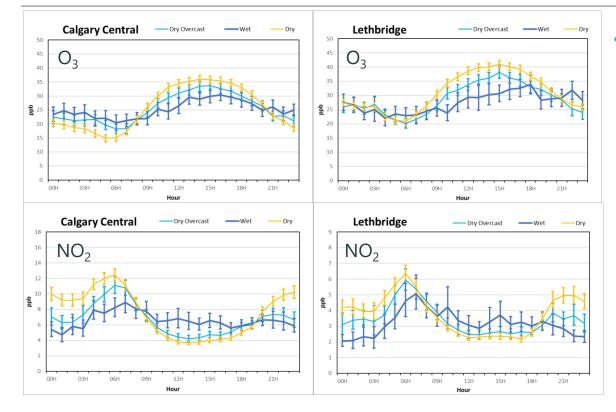

Hour

- Clear skies have generally equal or higher PM_{2.5} concentrations(µg/m³) than dry periods – possibly a result of dust resuspension
- PM_{2.5} concentrations during overcast hours and wet hours are nearly equal (except at Lethbridge)
- Even if clear skies enhance dispersion during the day, it gets more dusty

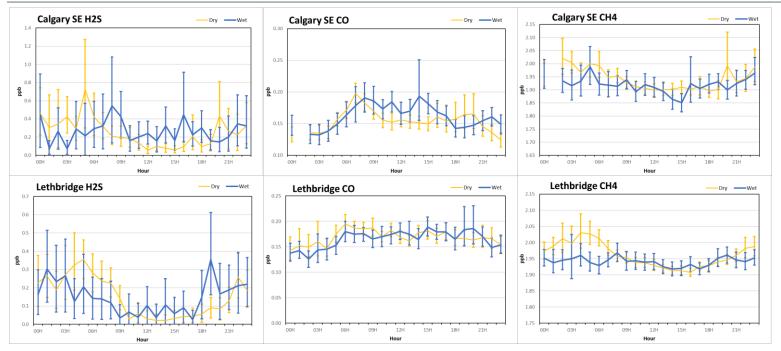

00H 03H 06H

Clear vs. Overcast skies – SO₂ and H₂S (Dry hours only)

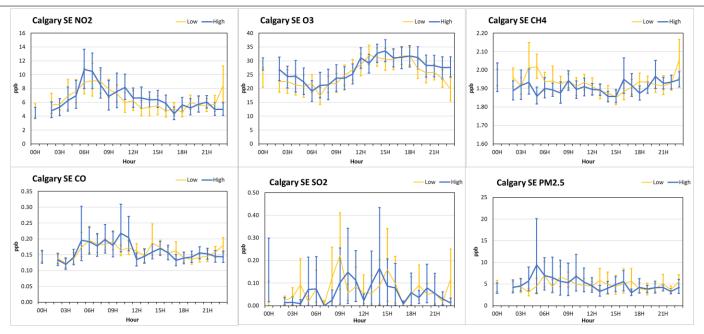
- As with PM_{2.5}, clear skies have higher SO₂ concentrations than overcast skies
- With H₂S, clear skies have higher concentrations at night – likely due to higher stability


Clear vs. Overcast skies – CH₄ and CO (Dry hours only)

- Like H_2S , clear skies have higher concentrations of CO and CH4 at night – likely due to higher stability
- Cloudiness need to be controlled for in drawing out the effect of rain


WOOD. A Preliminary Empirical Study on the Influence of Rainfall on Urban Air Quality

Wet vs. Dry – Overcast Skies


- Dry overcast concentrations move closer to wet concentrations, but the effect of rainfall remains:
 - Reduce O₃ in the daytime, increase it at night
 - Increase NO₂ in the daytime, reduce it at night

Wet vs. Dry – Overcast Skies only

• Rainfall seems to have limited effect on these pollutants

Effect of Rainfall Intensity

- Wet hours were divided into low (<1 mm/hr) and high rainfall intensity
- Very little difference in average concentrations

WOOD. A Preliminary Empirical Study on the Influence of Rainfall on Urban Air Quality

Concluding Notes

- PM_{2.5} and SO₂ do appear to be the most sensitive to rainfall, but effect is weaker than expected
- Cloudiness is a major confounding factor
 - Stronger than rainfall effect in case of O₃ and NOx
 - Unexpected lowering effect in the daytime
- Why is rainfall effect weak? Some possibilities:
 - Alberta rain is usually too light and infrequent to affect concentrations
 - High concentrations are too few
 - Contact between pollutants and droplets in the lower troposphere is too brief

Thank You!

A Preliminary Empirical Study on the Influence of Rainfall on Urban Air Quality

Emmanuel Anglo Senior Associate Scientist Wood Environment & Infrastructure Solutions Calgary, Alberta, Canada

