200

501

Mahyar Sakari, Ph.D.

Contents:

- Why tailor a clean-up strategy?
- How do you get the hypotheses tested?
- What did we learn?
- What does it say?

Why is tailoring a cleanup strategy important?

Lake Michigan Spill 2019, NHPR.ORG

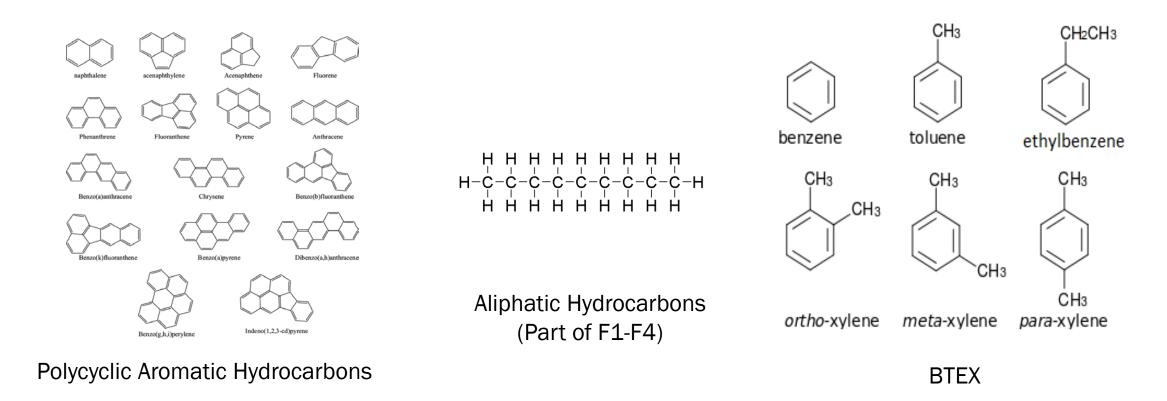
Exxon Valdez 1989, RGB Ventures

Deepwater Horizon 2010; Louisiana Governors Office

Why is tailoring a clean-up strategy important?

Chemistry of oil

General abundances of chemicals in oil

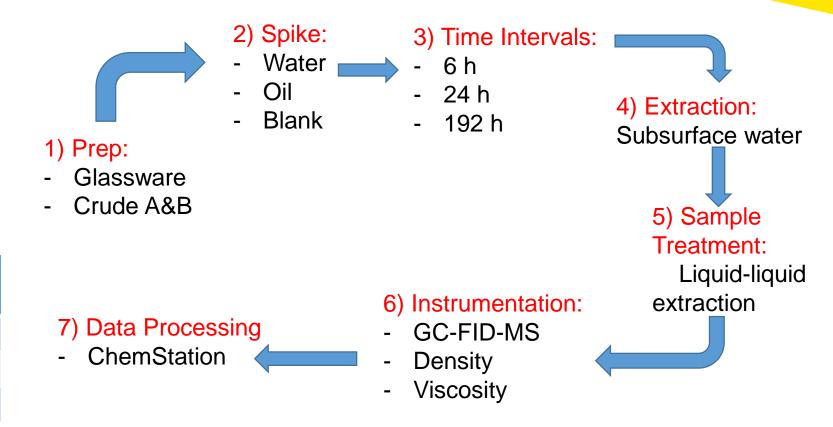

- Floating oil and residuals in water
- Composition in oil vs in water

Log Kow:
benzene (2.13) > toluene (2.69) >
ethylbenzene (2.84) > xylenes (3.15)

Environmental factors

Studied Compounds:

Research Questions

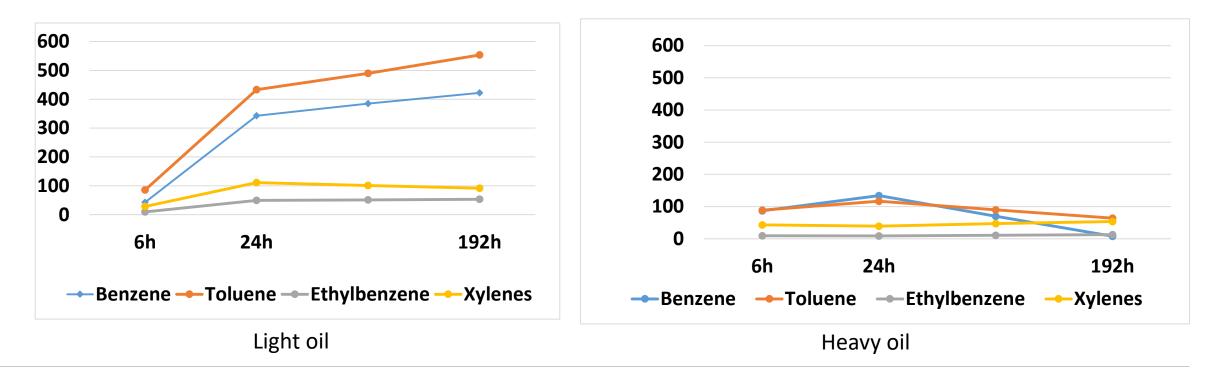

- Does the chemistry of oil affect the release of chemicals?
- Would the abundance of chemicals in oil be reflected in water?
- Does the time of exposure matter?
- Is the clean-up completed when the oil is collected?
- What are odds and mysteries for future studies?

- 150 g of water in a glass jar
- 10 g of crude oil
- Intervals: 6h, 24h and 192h
- Bottom layer collected and tested
- Target tests: BTEX, F1-F4, PAHs

	Viscosity Kinematic	Density
Crude Oil	m²/s	g/cm ³
A – light	11.540	0.8556
B - heavy	991.84	0.9528

What did we learn?

BTEX


	Light Oil					
Parameter	Concentration µg/L					
	6h	24h	192h	RDL*		
Benzene	42.8	343	422	0.5		
Toluene	85.2	433	553	0.3		
Ethylbenzene	9.5	49.1	53	0.5		
Xylenes	28	111	91.4	0.5		

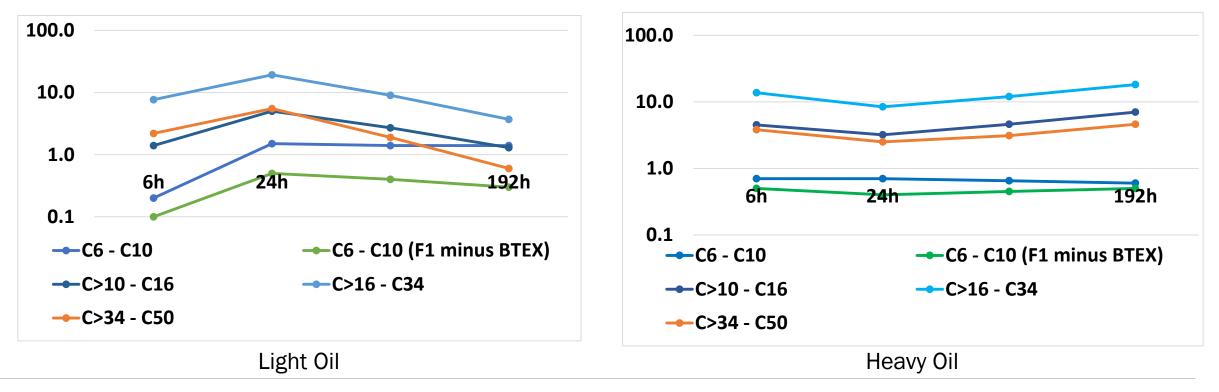
	Heavy Oil					
Parameter	Concentration µg/L					
	6h	24h	192h	RDL		
Benzene	87.1	134	7.9	0.5		
Toluene	88.9	117	64	0.3		
Ethylbenzene	9.4	8.8	13	0.5		
Xylenes	43	39.4	53.4	0.5		

What did we learn?

BTEX (ug/L)

What did we learn?

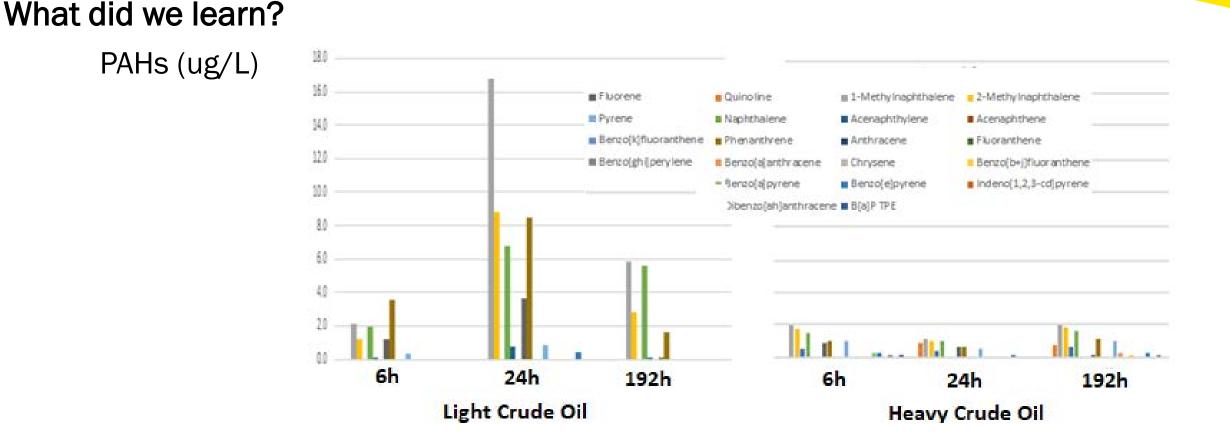
F1-F4


	Light Oil						
Parameter							
	6h	24h	192h	RDL	Oil		
C ₆ - C ₁₀ (F1)	0.2	1.5	1.4	0.1	39.9		
C ₆ - C ₁₀ (F ₁ minus BTEX)	0.1	0.5	0.3	0.1	37.2		
C ₁₀ - C ₁₆ (F2)	1.4	5.0	1.3	0.5	5743		
C ₁₆ - C ₃₄ (F3)	7.7	19.3	3.7	0.5	9946		
C ₃₄ - C ₅₀ (F4)	2.2	5.5	0.6	0.5	36		

	Heavy Oil							
Parameter		Concentration mg/L						
	6h	24h	192h	RDL	Oil			
C ₆ - C ₁₀ (F1)	0.7	0.7	0.6	0.1	49			
C ₆ - C ₁₀ (F ₁ minus BTEX)	0.5	0.4	0.5	0.1	46.6			
C ₁₀ - C ₁₆ (F2)	4.5	3.2	7.0	0.5	595			
C ₁₆ - C ₃₄ (F3)	13.7	8.4	18.2	0.5	678			
C ₃₄ - C ₅₀ (F4)	3.8	2.5	4.6	0.5	NA			

What did we learn?

F1-F4



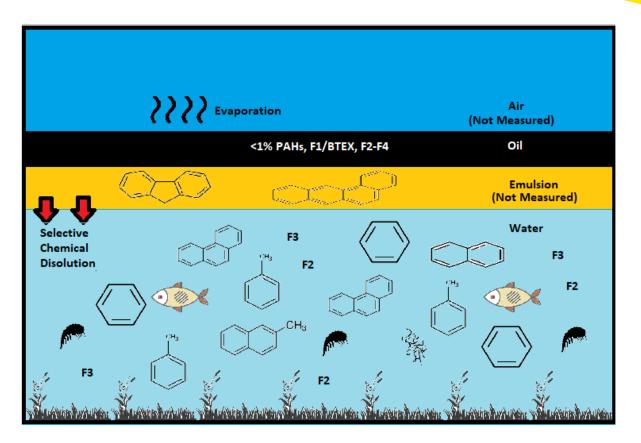
What did we learn?

PAHs

	Water exposed to and the original light oil				Water exposed to and the original heavy oil				
Parameter	Concentration µg/L								
	6h	24h	192h	Light Oil	6h	24h	192h	Heavy Oil	RDL
1-Methylnaphthalene	2.15	16.8	5.83	1244.17	1.95	1.14	2.03	66.18	0.05
2-Methylnaphthalene	1.18	8.77	2.81	1053.89	1.69	1.03	1.92	97.51	0.05
Perylene	<0.05	<0.05	<0.05	1.14	0.45	0.34	0.57	26.82	0.05
Naphthalene	1.98	6.75	5.60	385.51	1.45	1.04	1.67	49.44	0.05
Acenaphthylene	0.11	0.8	0.09	0.9	<0.05	<0.05	<0.05	0.53	0.05
Acenaphthene	<0.05	<0.05	<0.05	12.91	<0.05	<0.05	<0.05	7.33	0.05
Fluorene	1.22	3.63	0.88	139.97	0.86	0.62	0.68	36.28	0.05
Phenanthrene	3.58	8.49	1.64	388.41	0.95	0.64	1.09	54.91	0.05
Anthracene	<0.050	<0.050	<0.050	5.79	<0.05	<0.05	<0.05	11.82	0.050
Fluoranthene	<0.05	<0.05	<0.05	14.34	<0.05	<0.05	<0.05	13.06	0.05
Pyrene	0.33	0.89	<0.05	21.4	0.98	0.48	0.98	41.22	0.05
Benzo[a]anthracene	<0.050	<0.050	<0.050	166	<0.05	<0.05	0.210	6.18	0.050
Chrysene	<0.05	<0.05	<0.05	77.01	<0.05	<0.05	<0.05	42.17	0.05
Benzo[b+j]fluoranthene	<0.05	<0.05	<0.05	15.25	<0.05	<0.05	0.15	15.64	0.05
Benzo[k]fluoranthene	<0.05	<0.05	<0.05	0.83	<0.05	<0.05	<0.05	2.74	0.05
Benzo[a]pyrene	<0.035	<0.035	<0.035	0.99	0.203	<0.035	<0.035	4.42	0.035
Benzo[e]pyrene	<0.05	0.046	<0.05	19.44	0.25	0.12	0.26	13.2	0.05
Indeno[1,2,3-cd]pyrene	<0.05	<0.05	<0.05	0.89	<0.05	<0.05	<0.05	5.45	0.05
Benzo[ghi]perylene	<0.05	<0.05	<0.05	3.06	0.19	<0.05	0.19	8	0.05
Dibenzo[ah]anthracene	<0.040	<0.040	<0.040	2.18	<0.04	<0.04	<0.04	1.57	0.040

What does it say?

- Concentrations in water follows original concentrations in oil.
- The relative concentration of oil in water does not follow the similar trend.
- The release of benzene and toluene were higher than other BTEX.
- The release of benzene and toluene in lighter oil continued towards the final time interval.
- Heavier crude resists the release of chemicals due to kinematic viscosity and density.


What does it say? (cont . . .)

- The lighter oil releases more toxic PAHs and heavier crude more carcinogenic PAHs
- The release of chemicals from crude oil to water follows, the chemistry, abundance, solubility, density and viscosity
- The first 24h is crucial in spill control.
- Lakes are under the bigger threat than ocean where a lower buoyancy exists.

What does it say? (cont..)

- Emulsion layers between the oil in surface and water beneath acts as an intermediate layer performing a catch and release in time intervals.
- If we include this finding in a clean-up strategy, should we consider a tailored method?
- If this could get tested in a larger scale and results are confirming, should we have additional clean-up?
- Examples of tailored clean-up such as delayed cleanup based on type of oil, multi-stage clean-up to remove residuals, etc.

Questions?

Mahyar Sakari, Ph.D. sakari@agatlabs.com 403.291.4682 ext 234

