# Remediation of Bromacil and Dicamba-Impacted Groundwater

Barry Rakewich, P.Ag., EP Hans Bakker, P.Geo. Nichols Environmental (Canada) Ltd.

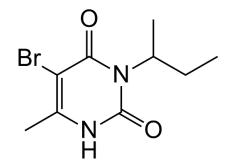




## Outline

- Background on Bromacil and Dicamba
- Site History
- Guideline Criteria Selection
- Assessment History
- Remediation Options
- In-Situ Chemical Oxidation
- Groundwater Recovery and Treatment
- Results
- Lessons Learned
- Sustainability Features

| 7                      |                   |                                                                                        | 11 1        |
|------------------------|-------------------|----------------------------------------------------------------------------------------|-------------|
|                        | GOV'T. ROAD       | ALL'CE.                                                                                | 7           |
| NE                     |                   | Prise<br>Balance<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1) | 4           |
| Existing H.P. Gas Line |                   | EGEND<br>Proposed H.P. Gas Line                                                        |             |
| Meter                  |                   | Quick Opening Valve                                                                    | 0           |
| Blowdown               | M<br>B            | Check Valve                                                                            | ŏ           |
| Relief Valve           | <b>6</b> 9        |                                                                                        |             |
|                        | PLAN              | SHOWING                                                                                |             |
| 11                     |                   | H.P. GAS PIPELINE                                                                      |             |
| Vice-President         | 8 General Manager | Manager - Production & T                                                               | ransmission |

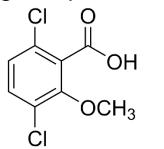



## **Background on Bromacil**

- Bromacil was first registered in 1963 and its typical trade name was Hyvar®. Non-selective long term residual herbicide.
- Persistence High (soil half-life between 14 and 1494 days)
- Mobility High (Due to high half-life, low soil adsorption coefficient and high water solubility value)
- Degradation primarily microbial, which is dependent on availability of microbial population
- Occurrence most likely to reside in pore or groundwater, unless organic content in soil is high










## **Background on Dicamba**

- Dicamba was first registered in 1964 and its typical trade name was Banvel®. Selective long term residual herbicide.
- Pesistence Low (half-life of Dicamba in soil ranges from 4 to 555 days, with the average half-life of 25 days. Water = <7 days)</p>
- Mobility High (high solubility in water and low soil adsorption coefficient)
- Degradation primarily microbial, which is dependent on availability of microbial population
- Occurrence most likely to reside in pore or groundwater, unless organic content in soil is high or pH is between 4 and 6.









## Site History

- Natural Gas Compressor Station from 1970s-1990s, previously agricultural
- **Compressor station removed in 2013**
- Herbicides applied annually (more dubious the further back you go)
- Environmental Assessment work began in 2011, starting with a Phase I ESA
- Surrounding Land Use → Agricultural



## **Guideline Criteria Selection**

- End land use is Agricultural
- Coarse-grained soils
- Most sensitive receptor is irrigation (cannot exclude)

|          |    | Potable Water | Ecological<br>Contact | Irrigation | Livestock Watering | Aquatic<br>Life |
|----------|----|---------------|-----------------------|------------|--------------------|-----------------|
| Bromacil | SK | 0.95          | 0.3                   | 0.0002     | 1.1                | 0.005           |
| Бготаси  | AB | 0.95          | 0.3                   | 0.0002     | 1.1                | 0.005           |
| Disembo  | SK | 0.12          |                       | 0.0000006  | 0.12               | 0.01            |
| Dicamba  | AB | 0.009         |                       | 0.000008   | 0.12               | 0.0061          |



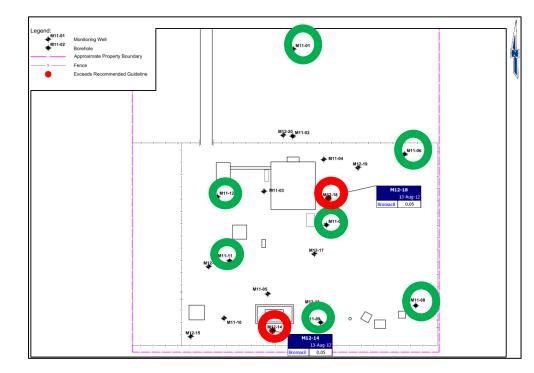
### **Assessment History**

- Phase I ESA 2011
- Phase II ESA 2011
- Delineation Drilling and GW 2012
- Delineation Drilling and GW 2013
- Chemical Oxidation Program and GW Monitoring 2014/2015
- Carbon Treatment Pilot Study 2015
- Recovery Well Installation and Pumping Test 2016
- Groundwater Monitoring Program 2017
- Groundwater Monitoring Program -2017
- Groundwater Recovery and Treatment Program 2019/2020



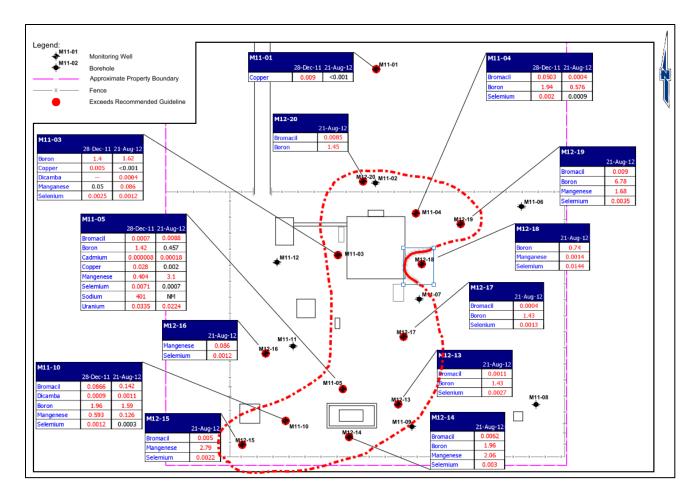
### Phase I ESA (2011)

#### • APECs identified:


- Condensate Tank
- Compressor Building
- Waste Storage (East side of Site)
- Low areas across Site
- Metering Building
- COPCs identified:
  - Petroleum hydrocarbons
  - Herbicides and sterilants
  - Metals (especially Mercury)





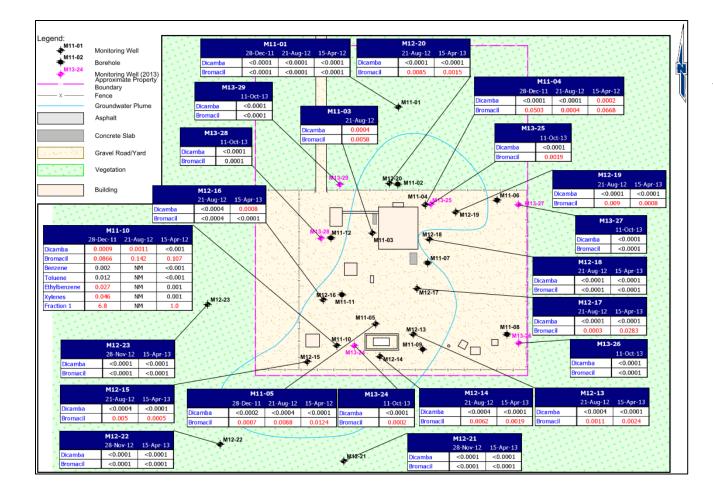

### Phase II ESA/Delineation Soil Results (2011/2012)

- Phase II ESA (2011): submitted samples between surface and 1.5 mbg for herbicides and sterilants.
- All results < laboratory MDL</li>
- MDL > guideline.
- Delineation (2012) results reported two bromacil exceedances at 0.30-0.45 mbg and at 3.1 mbg.
- Challenges with variable depths/locations of impacts on site, laboratory detection limits in 2011, cost of analysis and field detection capabilities.





### Phase II ESA/Delineation and Groundwater Results (2011/2012)




Difficulty achieving delineation with two drilling events.

Bromacil impacts likely extended off-site to south and southwest.



### **Delineation and Groundwater Results (2013)**



Vertical and horizontal delineation achieved (plume defined).

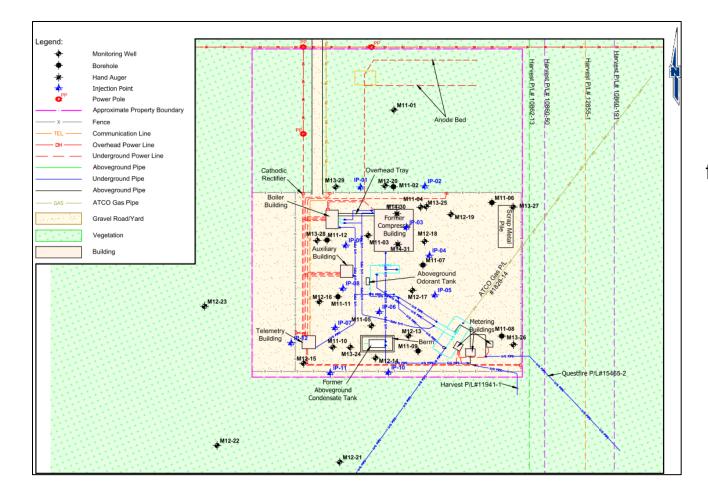
Impacts do extend offsite to S/SW (flow direction).

Challenges with achieving low enough detection limit for Dicamba.



### Site Decommissioned (2013-2017)






### **Remediation Options**

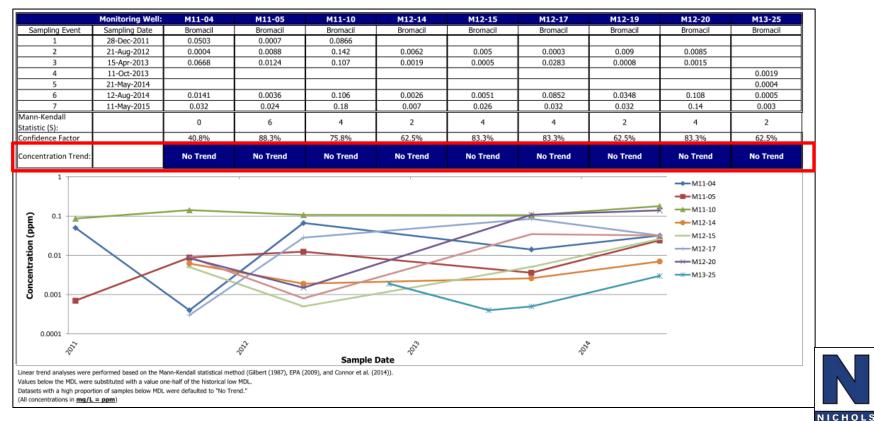
| Remediation Option                     | Outcome                                                                                         |
|----------------------------------------|-------------------------------------------------------------------------------------------------|
| Mechanical Excavation                  | Too deep and primarily in groundwater                                                           |
| Bioremediation                         | Effective for impacted surface soils primarily                                                  |
| Phytoremediation                       | Effective for impacted surface soils primarily                                                  |
| Low-Temperature Thermal Desorption and | Effective for impacted soils and groundwater, need to worry                                     |
| •                                      | about capturing combustion emissions. Costly                                                    |
| In-Situ Chemical Oxidation             | In-Situ treatment of organic-based sterilants in groundwater with an oxidizer                   |
|                                        | Recover water in-situ, treat through granular activated carbon, and reinject back into formaton |



# Chemical Oxidation and Groundwater Sampling Results (2014/2015)



Chemical injection was recommended given historical success with other organic sterilants and favorable bench study.


Sodium Persulphate injected at 12 pts over three events.

Above- and underground infrastructure limited amount and position of injection points.



## Chemical Oxidation and Groundwater Sampling Results (2014/2015)

- First injection event occurred in May 2014
- Groundwater sampled August 2014 and May 2015
- (No trend change)



### Carbon Treatment Bench Study (2015)

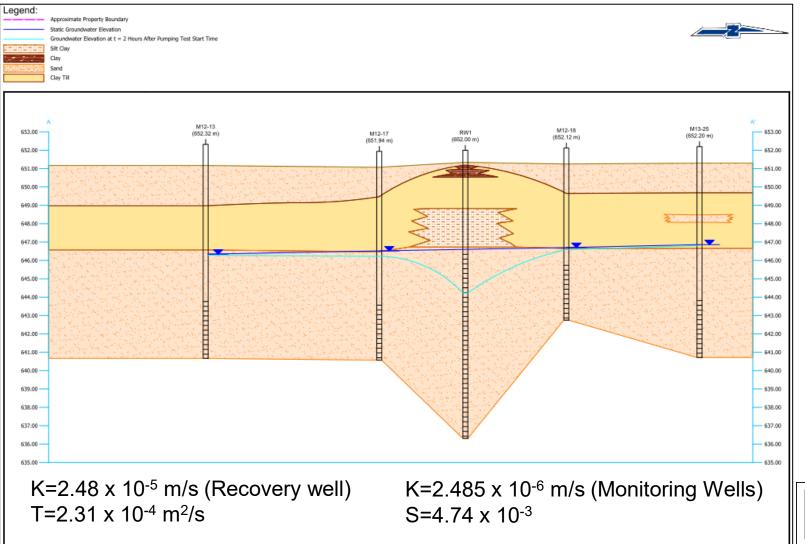
 Extracted approximately 500-L of impacted water from the site and pushed through two drums containing granular activated carbon (GAC)

#### Bromacil

|           | Post-Treatment<br>Concentration |
|-----------|---------------------------------|
| 0.025 ppm | <0.0001 ppm                     |

- Move forward with a Groundwater Recovery and Treatment Design.
- Initial installation of a recovery well and completed a pump test.




### Recovery Well Installation and Pump Test (2016)

- Installed 254 mm diameter recovery well to 15 mbg
- Completed pump test following well development

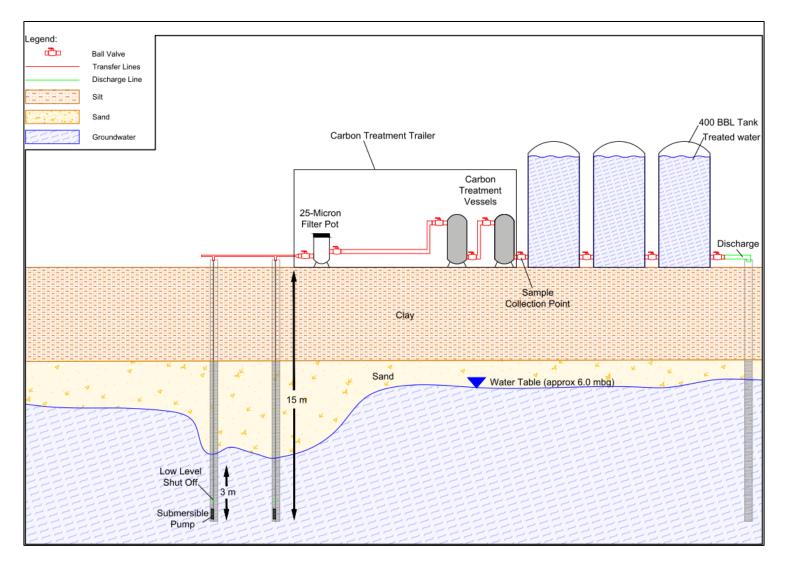




### Pump Test Results (2016)

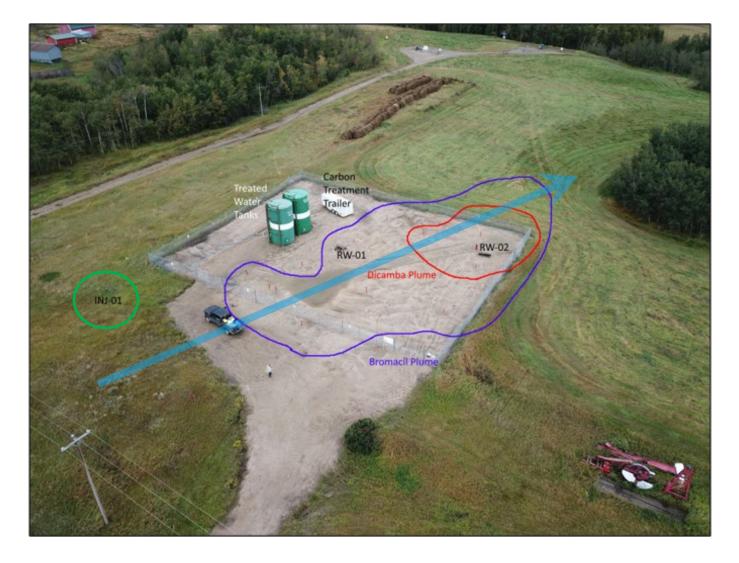


NICHOLS


### Pump Test Results (2016)

- System design driver...especially for pump selection and pumping rate.
- Results indicate there is lots of water and it flows into the well quickly.
- Not worried about over pumping the well, given treatment capacity of GAC system.






### Recovery and Treatment Design (2016)





### Recovery and Treatment Design (2016)





### Results (Bromacil - 2019)

- Recovered and treated ~230,000 L of impacted groundwater between May and September of 2019
- Groundwater sampling in November 2019
- Trend Analysis shows:

|                       | Monitoring Well: | M11-04   | M11-05     | M11-10   | M12-13   | M12-14     | M12-15   | M12-17     | M12-19   | M12-20   | M13-25     |
|-----------------------|------------------|----------|------------|----------|----------|------------|----------|------------|----------|----------|------------|
| Sampling Event        | Sampling Date    | Bromacil | Bromacil   | Bromacil | Bromacil | Bromacil   | Bromacil | Bromacil   | Bromacil | Bromacil | Bromacil   |
| 1                     | 28-Dec-2011      | 0.0503   | 0.0007     | 0.0866   |          |            |          |            |          |          |            |
| 2                     | 21-Aug-2012      | 0.0004   | 0.0088     | 0.142    | 0.0011   | 0.0062     | 0.005    | 0.0003     | 0.009    | 0.0085   |            |
| 3                     | 15-Apr-2013      | 0.0668   | 0.0124     | 0.107    | 0.0024   | 0.0019     | 0.0005   | 0.0283     | 0.0008   | 0.0015   |            |
| 4                     | 11-Oct-2013      |          |            |          |          |            |          |            |          |          | 0.0019     |
| 5                     | 21-May-2014      |          |            |          |          |            |          |            |          |          | 0.0004     |
| 6                     | 12-Aug-2014      | 0.0141   | 0.0036     | 0.106    |          | 0.0026     | 0.0051   | 0.0852     | 0.0348   | 0.108    | 0.0005     |
| 7                     | 11-May-2015      | 0.032    | 0.024      | 0.18     | 0.002    | 0.007      | 0.026    | 0.032      | 0.032    | 0.14     | 0.003      |
| 8                     | 6-Oct-2016       | 0.028    |            |          |          |            |          | 0.091      |          |          |            |
| 9                     | 5-Jun-2017       | 0.028    | 0.02       | 0.16     | 0.057    | 0.027      | 0.0094   | 0.17       | 0.016    | 0.079    | 0.0059     |
| 10                    | 7-Nov-2019       | 0.075    | 0.0143     | 0.0707   | 0.0118   | 0.0455     | 0.00176  | 0.116      | 0.0133   | 0.00046  | 0.0059     |
| Mann-Kendall          |                  | -        |            |          | 6        |            | 2        | 17         |          |          | 10         |
| Statistic (S):        |                  | 5        | 11         | 1        | 6        | 11         | 3        | 17         | 1        | -1       | 10         |
| Confidence Factor     |                  | 76.5%    | 97.2%      | 50.0%    | 88.3%    | 97.2%      | 64.0%    | >99.9%     | 50.0%    | 50.0%    | 95.2%      |
| Area<br>Concentration |                  |          |            |          |          |            |          |            |          |          |            |
| Trend:                |                  | No Trend | Increasing | No Trend | No Trend | Increasing | No Trend | Increasing | No Trend | No Trend | Increasing |

- Even though increasing trends are appearing in some monitoring wells, this is good news as there was no trending in 2015.
- Indicative of plume movement/contaminant mobilization.
- Increase opportunity for recovery and treatment of contaminants.



### Results (Bromacil - 2020)

- Recovered and treated ~160,000 L of impacted groundwater between June and September of 2020
- Groundwater sampling in September 2020
- Trend Analysis shows:

|                                | Monitoring Well: | M11-03   | M11-04   | M11-05     | M11-10   | M12-13     | M12-14     | M12-15   | M12-17     | M12-19   | M12-20   | M13-25     | M13-28     |
|--------------------------------|------------------|----------|----------|------------|----------|------------|------------|----------|------------|----------|----------|------------|------------|
| Sampling Event                 | Sampling Date    | Bromacil | Bromacil | Bromacil   | Bromacil | Bromacil   | Bromacil   | Bromacil | Bromacil   | Bromacil | Bromacil | Bromacil   | Bromacil   |
| 1                              | 28-Dec-2011      |          | 0.0503   | 0.0007     | 0.0866   |            |            |          |            |          |          |            |            |
| 2                              | 21-Aug-2012      | 0.0058   | 0.0004   | 0.0088     | 0.142    | 0.0011     | 0.0062     | 0.005    | 0.0003     | 0.009    | 0.0085   |            |            |
| 3                              | 15-Apr-2013      |          | 0.0668   | 0.0124     | 0.107    | 0.0024     | 0.0019     | 0.0005   | 0.0283     | 0.0008   | 0.0015   |            |            |
| 4                              | 11-Oct-2013      |          |          |            |          |            |            |          |            |          |          | 0.0019     | 0.0001     |
| 5                              | 21-May-2014      |          |          |            |          |            |            |          |            |          |          | 0.0004     |            |
| 6                              | 12-Aug-2014      | 0.0723   | 0.0141   | 0.0036     | 0.106    |            | 0.0026     | 0.0051   | 0.0852     | 0.0348   | 0.108    | 0.0005     | 0.0018     |
| 7                              | 11-May-2015      | 0.13     | 0.032    | 0.024      | 0.18     | 0.002      | 0.007      | 0.026    | 0.032      | 0.032    | 0.14     | 0.003      | 0.009      |
| 8                              | 6-Oct-2016       |          | 0.028    |            |          |            |            |          | 0.091      |          |          |            |            |
| 9                              | 5-Jun-2017       | 0.14     | 0.028    | 0.02       | 0.16     | 0.057      | 0.027      | 0.0094   | 0.17       | 0.016    | 0.079    | 0.0059     | 0.0096     |
| 10                             | 7-Nov-2019       | 0.0311   | 0.075    | 0.0143     | 0.0707   | 0.0118     | 0.0455     | 0.00176  | 0.116      | 0.0133   | 0.00046  | 0.0059     | 0.0216     |
| 11                             | 20-Sep-2020      | 0.0627   | 0.0229   | 0.0139     | 0.0736   | 0.0165     | 0.0194     | 0.006    | 0.126      | 0.0082   | 0.0498   | 0.0123     | 0.0087     |
| Mann-Kendall<br>Statistic (S): |                  | 3        | 1        | 12         | -4       | 9          | 13         | 5        | 22         | -3       | -1       | 16         | 9          |
| Confidence Factor<br>(CF):     |                  | 67.5%    | 50.0%    | 98.2%      | 69.0%    | 97.5%      | 99.2%      | 76.5%    | >99.9%     | 64.0%    | 50.0%    | >99.9%     | 97.5%      |
| Concentration Trend:           |                  | No Trend | No Trend | Increasing | No Trend | Increasing | Increasing | No Trend | Increasing | No Trend | No Trend | Increasing | Increasing |

- Continued plume movement/contaminant mobilization.
- Some additional wells now have enough data sets for trending.
- Increase opportunity for recovery and treatment of contaminants.



### Results (Dicamba - 2020)

- Recovered and treated ~160,000 L of impacted groundwater between June and September of 2020
- Groundwater sampling in September 2020
- Trend Analysis shows:

|                                | Monitoring Well: | M11-05    | M11-10     | M12-14   | M12-15     | M12-16     |
|--------------------------------|------------------|-----------|------------|----------|------------|------------|
| Sampling Event                 | Sampling Date    | Dicamba   | Dicamba    | Dicamba  | Dicamba    | Dicamba    |
| 1                              | 28-Dec-2011      |           | 0.0009     |          |            |            |
| 2                              | 21-Aug-2012      |           | 0.0011     |          |            |            |
| 3                              | 15-Apr-2013      |           |            |          |            | 0.0008     |
| 4                              | 12-Aug-2014      | 0.000019  | 0.0011     | 0.000031 | 0.000013   | 0.00076    |
| 5                              | 11-May-2015      | 0.000021  | 0.0003     | 0.000021 | 0.000021   | 0.000015   |
| 6                              | 5-Jun-2017       | 0.000065  | 0.0015     | 0.00038  |            |            |
| 7                              | 7-Nov-2019       | 0.0000274 | 0.00188    |          | 0.000059   | 0.0000298  |
| 8                              | 16-Sep-2020      |           | 0.00196    | 0.000163 | 0.000236   | 0.0000075  |
| Mann-Kendall<br>Statistic (S): |                  | 4         | 14         | 2        | 6          | -8         |
| Confidence Factor<br>(CF):     |                  | 83.3%     | >99.9%     | 62.5%    | 95.8%      | 95.8%      |
| Concentration Trend:           |                  | No Trend  | Increasing | No Trend | Increasing | Decreasing |

Enough data sets in 2020 to complete trend analyses.



### Lessons Learned

- Extended turnaround time between groundwater recovery, sampling the treated water and discharging tanks/reinjecting treated water (turnaround time approximately 4 months)
- Some simple design changes could eliminate this extended turnaround time such as:
  - Double storage capacity on site (two being filled and two being discharged at the same time)
  - □ Additional solar panels to increase flow rate, decrease recovery time.
  - Potentially discharge treated water into highway ROW with regulatory approval.
  - Remote telemetry for real time monitoring and overall system optimization.



### **Sustainability Features**

Treated groundwater re-injected on-site providing savings on transportation and disposal transportation cost.

Keeps water within the same hydrological system and creates preferred hydraulic gradient, moving the plume to recovery wells.





Solar-powered pumping system provides low cost, renewable energy source.





zoom

### Questions??

Time traveler: What year is it?

Me: 2020

Time traveler:





