

Advances in Risk Communication for Sites with Large Data Sets

Sheila Luther, M.Sc., P.Ag. and Gaelen Merritt, B.A.Sc.

Introduction

CartoonStock.com

Matrix Solutions Inc.

Case Study 1

Vertical Exaggeration 3:1

- Oil well drilled in 1979
- Converted to a produced water injection well in 1996
- Decommissioned October 2002
- Residual chloride impacts that may threaten Domestic Use Aquifers (DUAs)

Conceptual Flow Diagram

Chloride Impacts

and mass transport

Big Questions

- What potential impacts could occur?
- What can we do to mitigate?
- How effective will that mitigation be?
- How do we visualize all this and convey it to those making the decisions?

Matrix Solutions Inc.

7

Matrix Solutions Inc.

Deep Sandstone

Regional Sandstone (~120 m BGS) - Base Case: 0.0 m² Simulated Exceeding Regulatory Threshold

No exceedance

Matrix Solutions Inc.

What if we excavate?

- Target a certain concentration criteria:
 - E.g. "remove all material above X mg/l chloride and replace with clean infill"
- How much material corresponds to a certain criteria?
- How much will we have to dig to get at it?
- How much will it cost?
- How effective it be in mitigating impacts?

Excavation Scenarios

Matrix Solutions Inc.

Excavation Scenario Results

Matrix Solutions Inc.

13

Case Study 2: Interactive Visualization of Model Scenario Results

- Contaminant plume migrating eastward through DUA
- Different pumping configurations (# of locations/rates/duration of pumping) considered
- Each run through the model and results presented in interactive html

Case Study 2

Demo of html

Case Study 3: Interactive Quasi-3d visualization of Plume migration

- 3 key geologic layers: Peat->Clay->Bedrock
 DUA
- Chloride release in peat
- Concerned about DUA receptor and off site well
- Base Case/No additional remediation scenario focus

Case Study 3

Case Study 4: Sulphur Specific Transport

• Consider the problem of sulphate transport in a calcite rich environment

 $CaCO_3 + H_2SO_4 + H_20 \rightarrow CaSO_4 * 2H_2O + CO_2$

- Lower pH → More dissolved Ca → More CaSO₄*2 H₂O formation
- Some sulphate will precipitate out as gypsum, some will remain dissolved
 - Only dissolved component "available" for mass transport

Mass Transport Model ←→Geochemical Model

Mass Transport Model ←→Geochemical Model

- In between mass transport model time steps, a geochemical run at each model node (representing a portion space) to determine amount of gypsum precipitation
- Amount of gypsum precipitated at each node stored in an array
- In later time times, dissolution of gypsum occurs as clean groundwater flows through
- Visualize effect of representing this in interactive html

Case Study 4

Summary

- More than just peak breakthrough curves to look at!
 - -Area of impact
 - –Volume of impact
 - -Spatial distribution of impact
 - -Duration of impact
 - -Temporal

Summary Cont'd

- Increased computational resources + basic programming ability:
 - Execute and convey modelled results to stakeholders transparently, digestibly and quickly – "gets everyone on the same page"
 - Utilize user-interactivity as a means of engagement
 - Can also be used to illustrate key concepts (like gypsum formation/dissolution)
 - Maximize problem understanding \rightarrow optimized decision making
- Next Step
 - Optimization applications

Matrix Contacts

 Sheila Luther, Matrix Solutions Inc. – Principal Soil Scientist <u>sluther@matrix-solutions.com</u>

 Gaelen Merritt, Matrix Solutions Inc. – Groundwater Modelling Specialist

gmerritt@matrix-solutions.com

