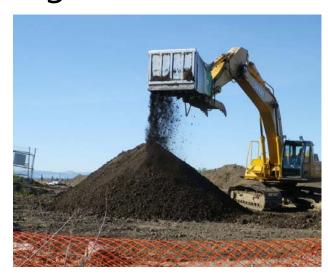


Site-Specific Plant Ecotoxicity of Residual Petroleum Hydrocarbons Fraction 3 in Subarctic Soils

Amy Gainer, Ph.D., P.Ag.


Northern Challenges

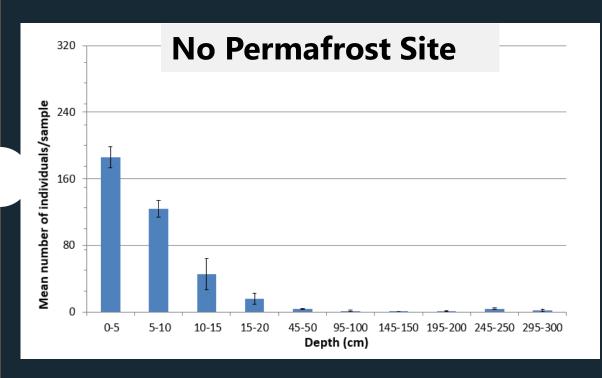
- Remediation success limited by numerous factors including:
 - Climate
 - Remoteness
 - Lack of waste disposal facilities
- Often bioremediation approaches used for hydrocarbons

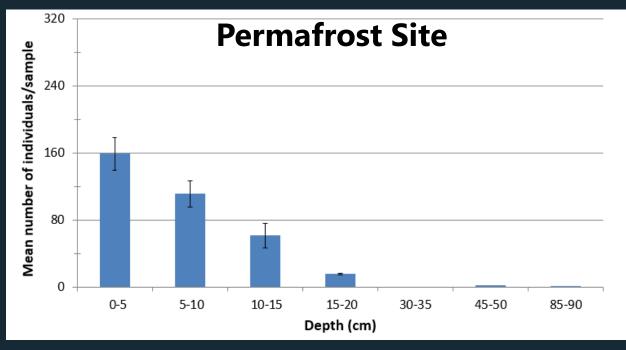
Project Background

- Taiga Plains Eco Zone of NWT
- Bioremediation of petroleum hydrocarbon contaminated soils using on-site biocells
 - ~5 years treatment
- F2 degradation success

Project Challenges

- Residual F3 degradation became limited overtime
 - Still exceeding generic CCME guidelines
- Treatability range 2500 to 5000 mg/kg F3
 - Industrial Guidelines = 2500/1700 mg/kg
 - Residential/Parkland Guidelines = 1300/300 mg/kg
- Eco soil contact generic guidelines issues
 - Earthworms
 - Agronomic species
 - Minimal weathering




Project Objective

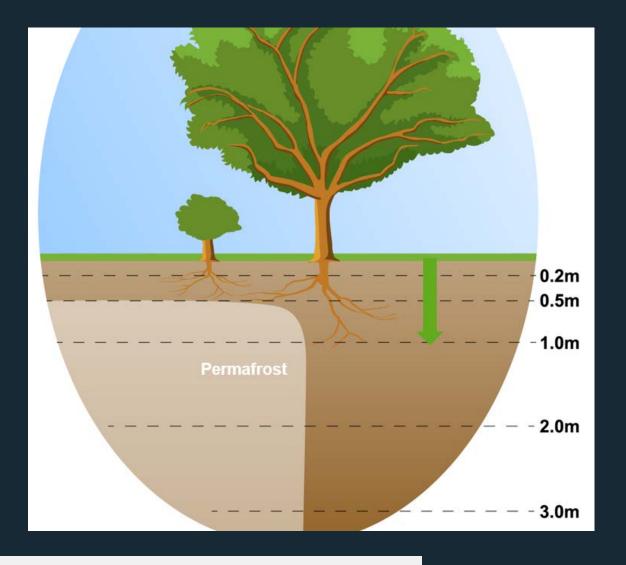
- Developing site-specific remediation guidelines for PHC F3 for the eco-contact pathway that are protective of native plants and invertebrates found in Taiga Plains ecozone.
- Test using climatic conditions reflective of Taiga Plains

Collaborative research project with industry partner, consultants, academia, Saskatchewan Research Council and Environment Canada and Climate Change

Project History - Soil Fauna Survey

Majority in top 20 cm Low populations identified 0.5 to 3 m

Majority in top 20 cm Low populations identified 0.3 to 0.9 m



Project History – Rooting Depth Field Survey

Non-permafrost = 0.7 to 1.0 m

1 m depth for ecological soil contact is appropriate

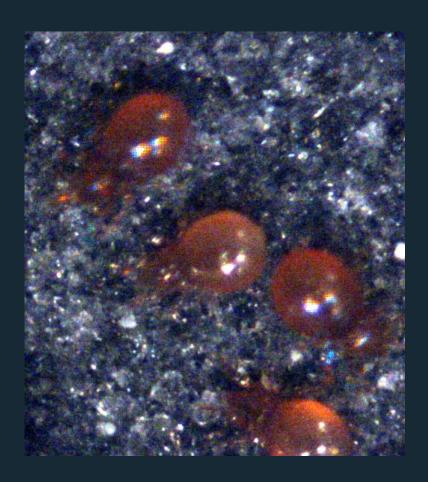
Project History – Plant Selection

# of Species	Comment
140	Taiga Plains Literature/Site survey
39	Suitable for eco-tox tests
15	Seed acquisition from Taiga Plains
10	Met test validation criteria under northern climate conditions
6	Tested in reference and F3 contaminated soils

Project History – Plant Selection

Plant	# of test soils
Yarrow	4
Black spruce	4
Bebb's willow	
Green alder	
Slender	1
wheatgrass	_
Balsam poplar	

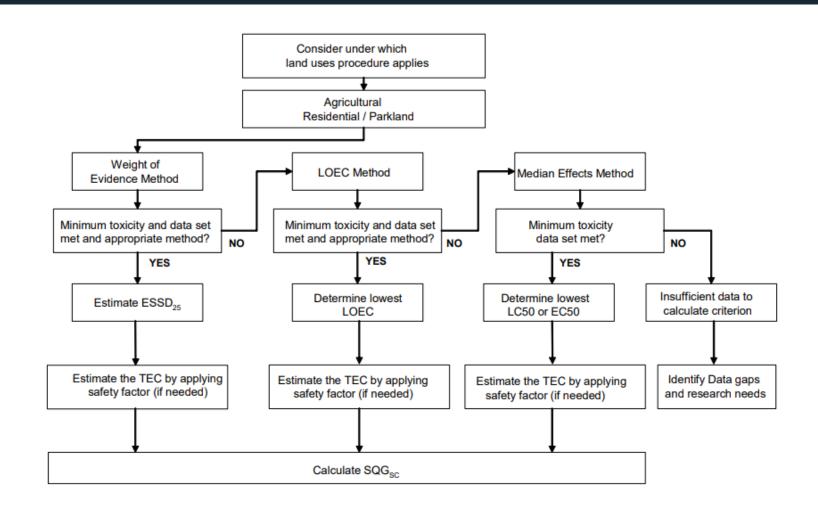
Plant Toxicity Testing Results


Plant	No Observed Effects Concentration (mg/kg F3)
Yarrow	1600-5950
Black spruce	1600-5950
Bebb's willow	1600
Green alder	1600
Slender wheatgrass	1600
Balsam poplar	1600

- No toxic effects to plants observed between uncontaminated background locations and contaminated samples
 - at times higher growth in F3 contaminated soils
- Coarse/Fine F3 guidelines for parkland land use 300/1300 mg/kg

Future Directions

Soil Invertebrate toxicity tests with Collembola and Mites



Future Directions

 Determine a sitespecific guideline using NOECs that is not overly conservative

Where: $ESSD_{25}$ = Estimated Species Sensitivity Distribution – 25th Percentile, TEC = Threshold Effects Concentration, LOEC = Lowest Observed Effect Concentration, LC_{50} = Median Effective Concentration.

Figure 10: Procedure for Deriving Soil Quality Guidelines for Soil Contact for Agricultural and Residential/Parkland Land Use

Acknowledgements

Imperial Oil Limited
Saskatchewan Research Council
Environment Canada and Climate Change
Queens University
Royal Military College of Canada
Previous contributors

amy.gainer@advisian.com