

A New, Sustainable Remedial Technology to Facilitate Risk Management and Closure of Mobile NAPL Sites

Virtual RemTech October 14, 2020 Kevin French

Presenter

Kevin French, P.Eng

- Vice President, Vertex Environmental Inc.
- B.A.Sc., Civil/Env. Eng., U. Waterloo
- >30 years environmental engineering (consulting and remediation contracting)

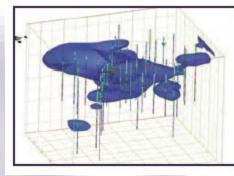
Vertex Environmental Inc.

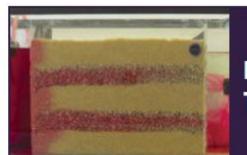
- Founded in 2003
- Bruce Tunnicliffe, M.A.Sc., P.Eng.
- Specialized Environmental Remediation Contracting (in-situ, ex-situ, systems)
- High Resolution Site Characterization (HRSC)

/ERTI

Vertex Environmental Inc.

In-Situ Remediation


Ex-Situ Remediation


High Resolution Characterization

Treatment Systems

Remedial Design

Bench-Scale Testing

VERTEX

Presentation Overview

- Applicability
- Remedial Approaches
- Risk Assessment Challenges
- Block & Adsorb Technology
- Bench-Scale Testing
- Pilot-Scale Testing
- Next Steps
- Conclusions
- Acknowledgements
- Questions

Applicability

Applicability

Types of LNAPL impacts applicable to the technology:

- Phase-separated PHCs (measurable, films & sheens)
- Mobile or migrating; not residual
- Removal / destruction not needed from risk perspective
- Removal not possible / desired:
 - Coincident excavation not planned
 - Too deep; beneath structures; in B/R, etc.

VERTEX

Remedial Approaches

Remediation Approaches

Removal / Destruction:

- Excavation
- Fluid Recovery
- AS / SVE
- Thermal
- ChemOx
- Bio remediation / sparging / venting

Control / Management:

- MNA / NSZD
- Adsorption
- Permeability Reduction
 Stabilization
- Isolation / Containment
- Risk Assessment / Risk Management

Combinations of the above

Risk Assessment Challenges

Risk Assessment Challenges

Several Canadian jurisdictions allow RAs on PHCs:

– BC:

- Must assess whether LNAPL is mobile or stable (1 yr monitoring needed)
- LNAPL (>2 mm) in MWs and mobile LNAPL can trigger "high-risk site" classification
- Must assess VI considerations
- AB:
 - Control (non-mobile) or actively remediate (remove) to the "extent practicable" (mobile)
 - LNAPL source control: "stable" and "decreasing"

VERTE

 Exposure controls and risk management may be needed

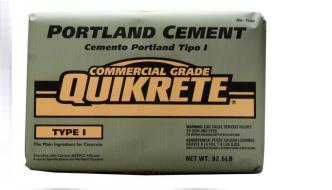
Risk Assessment Challenges

- ON:
 - Permitted (B/R) but not preferred (O/B)
 - Remove LNAPL to the "extent practicable" (incl. films, sheen and >50% solubility)
 - Must assess VI considerations

What if there were a way to effectively immobilize LNAPL in-situ to allow easier approval of an RA?

Assist with reducing off-site risks & need for barrier walls; address GW to SW migration pathway; reduce vapour concerns; shorten length of monitoring programs, etc.

Block & Adsorb Technology



Block & Adsorb Technology

Concept:

- Bind mobile LNAPL & high concentrations of PHCs in soil and groundwater
- Lower formation permeability
- Enhance biodegradation potential

Block = Portland Cement (PC)
& Adsorb = Activated Carbon (GAC / PAC)

Block & Adsorb Technology

Possible Scenario:

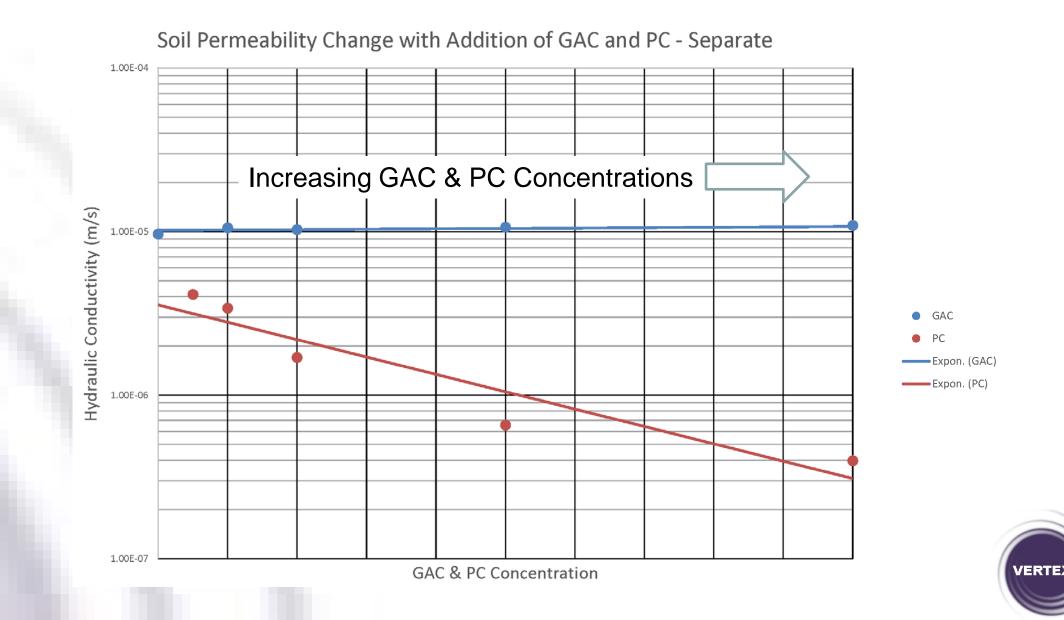
- Risk Assessment
 - Soil and groundwater concentrations pass RA
 - No mobile LNAPL allowed under RA guidance
 - Possible concern over LNAPL migration
- Block & Adsorb Solution
 - Immobilize LNAPL in-situ
 - Not limited by depth or water table
 - No wastes generated
 - No other treatment necessary

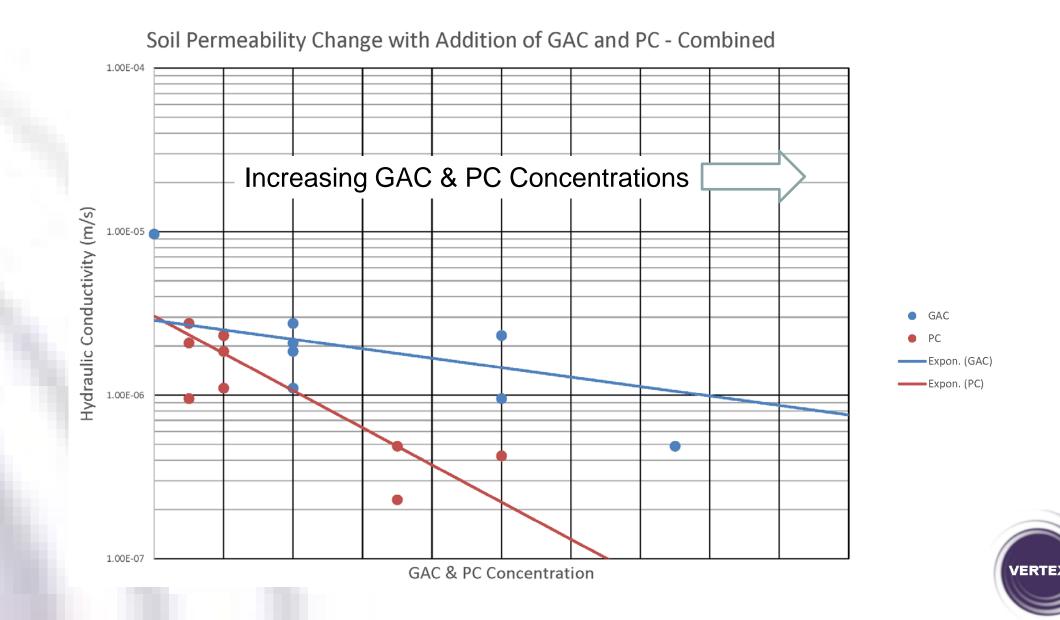
Two stages Bench-Scale testing completed:

- 1. Separate:
 - Blocking capacity of PC alone
 - Adsorption capacity of GAC alone
- 2. Combined:
 - Assessment of synergies by using PC and GAC together

Soil samples obtained from site:

- Baseline testing for PHCs and LNAPL / sheen presence
- Spiked as needed to increase PHC contamination level: ~30,000 ppm of F2 and F3 range PHCs

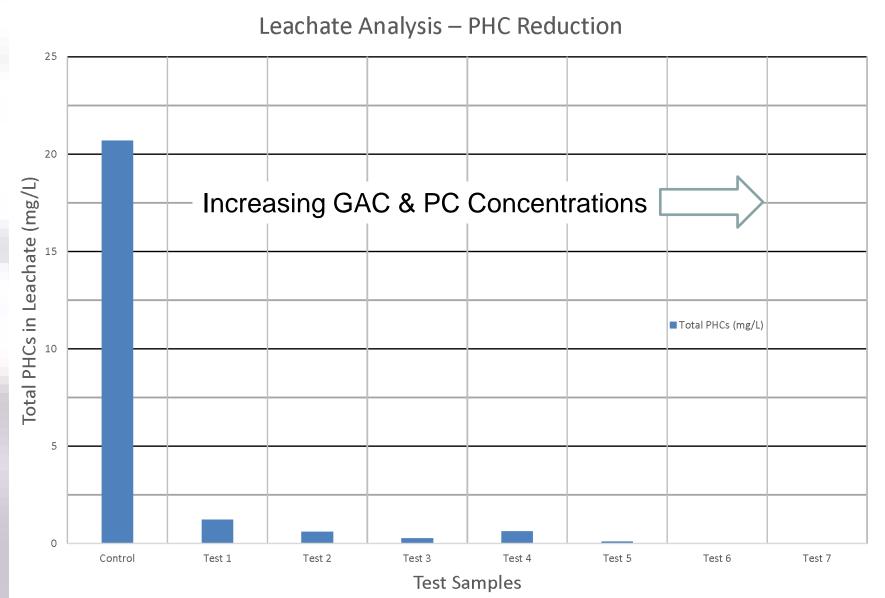



Soil samples were assessed pre- and post-treatment for:

- Hydraulic conductivity
- LNAPL or sheen mobility:
 - Liberation from soil via agitation
 - Leachate via flow-through column
- "Workability" (soil-like)
- PHC concentrations in soils and leachate

Visual LNAPL (dyed) in Individual PC & GAC Test Samples

Increasing PC Concentration


Increasing GAC Concentration

	GAC Alone		GAC & PC Combined				PC Alone		
Increasing GAC Concentration	Reactor	Average		Reactor	Average		Reactor	Average	Increasing PC Concentration
	Control	Heavy		Control	Heavy		Control	Heavy	
	G1	Slight		PG1	No		P1	Moderate	
	G2	Slight		PG2	No		PI PI	Moderate	
				PG3	No		P2 P3 N/A	Slight	
	G3	Trace		PG4	No				
				PG5	No			Trace	
	N/A	-		PG6	No			-	
	G4	Trace		PG7	No				
	N/A	-		PG8	No		P4	No	ICLE
	G5	No		PG9	No		Р5	No	

Finding: relatively low concentrations of PC and GAC in combination are **more effective** at immobilizing PHC LNAPL that using higher concentrations of just PC or GAC

VERTE)

Finding: for soil mixtures containing PC and GAC above certain concentrations, the treated soils would not only have immobile PHC LNAPL, but essentially unleachable levels of PHC parameters as well.

Main findings:

- Combined PC and GAC more effective than individually
- Effective immobilization of PHC LNAPL and sheens in soils at up to 30,000 mg/kg
- Still "soil-like" with up to moderate concentrations of PC
- Low to moderate concentrations of PC decreases permeability by 80% to 95%
- Reduced levels of dissolved-phase PHCs
 - Significant reduction in leachability with low PC & GAC
 - Essentially unleachable at higher concentrations
- The technology should be applicable to treat soils in-situ

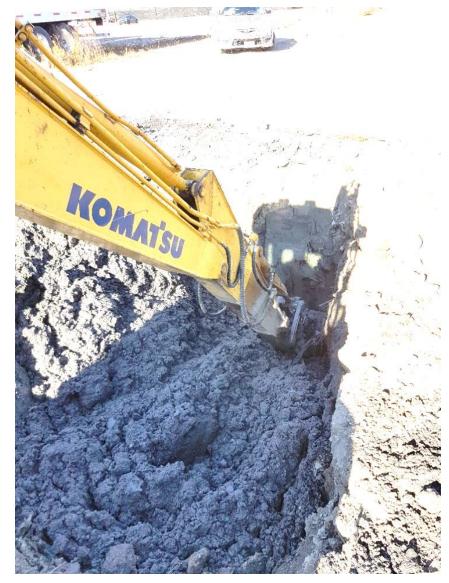
Pilot-scale trials to further validate Block & Adsorb technology included the following activities:

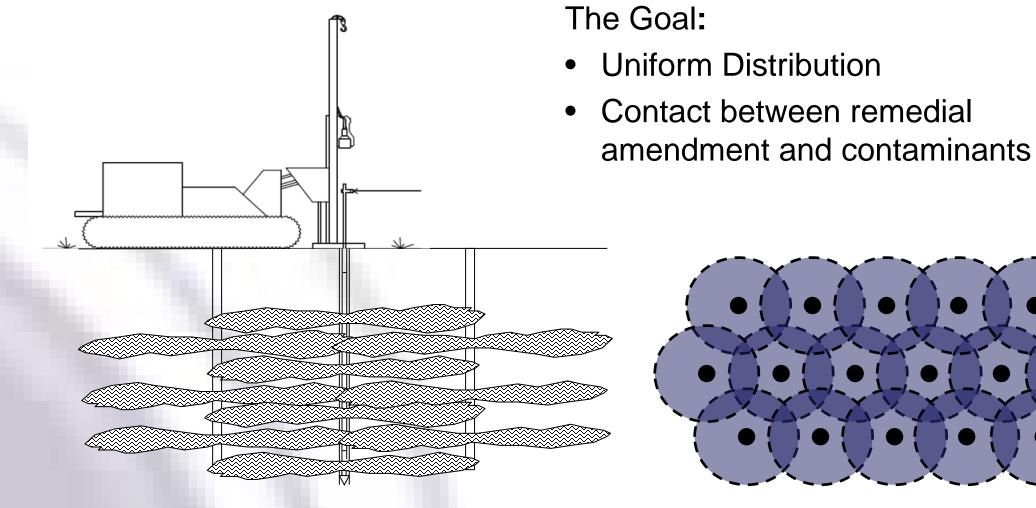
- Site characterization of soil and groundwater conditions to establish baseline (PHCs in soil of ~45,000 ppm)
- Construction of three test plots to investigate control conditions, soil mixing approach, and injection approach
- Groundwater sampling following application of technology
- Analysis of analytical data collected over 8 weeks throughout the testing

Three test plots with similar degrees of PHC LNAPL contamination were selected:

- 1. Control Plot: Left undisturbed. No amendments or other changes introduced
- 2. Test Plot 1 (Soil Mixing): Amendments introduced into subsurface via direct placement followed by soil mixing using excavator
- **3. Test Plot 2 (Injection)**: Amendments introduced into subsurface via mixing into suspensions / slurries & injection using direct push drill rig & pumps

GAC addition and soil mixing


PC addition and soil mixing


Soil consistency before and after in Soil Mixing Plot

Profile View

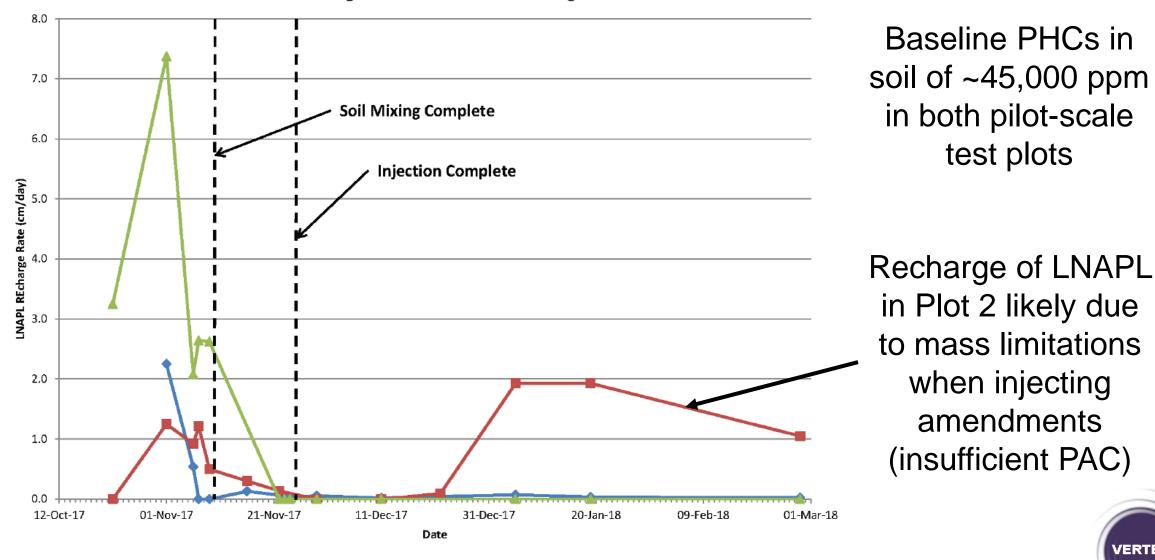
Plan View

Groundwater Samples Collected from (L to R): Control Plot (No Treatment), Test Plot 1 (Soil Mixing) and Test Plot 2 (Injection)



Test Pit Excavated into Test Plot 1 (Soil Mixing) – Within (left) and Beyond (right) Treated Soil Mass

Test Pit Excavated into Test Plot 2 (Injection) – Less uniform than Plot 1; Note entry of LNAPL and water from outside area of injection influence (R)



Treated Soils from Test Plot 1 (Soil Mixing) (L) and Test Plot 2 (Injection) (R)

LNAPL Recharge Rates into Monitoring Wells

Injection _____Soil Mixing

Control

VERTE)

Main findings:

- Block & Adsorb proven effective at immobilizing LNAPL in-situ
- Delivery methods tested are each suitable for the delivery / distribution of remedial amendments in subsurface:
 - Soil Mixing suitable for near surface soils and areas amenable to physical disturbance
 - Injection suitable for deeper soils and areas not amenable to physical disturbance (e.g. under buildings)
- Both application methods are designed to overcome heterogeneities in stratigraphy
- Block & Adsorb technology reduced dissolved phase groundwater concentrations of PHCs by upwards of >90%

VERTE)

Conclusions

Conclusions

What if there were a way to effectively immobilize LNAPL in-situ to allow easier approval of an RA?

Block & Adsorb Technology:

- No excavation / extraction / mass removal / destruction required
- Proven to immobilize up to at least 45,000 mg/kg of PHCs in soil (mixing) and ~15,000 to 20,000 mg/kg (one injection event)
- Drastically reduces dissolved-phase PHCs in groundwater also
- Can be directly soil mixed or injected depending on site conditions
- No wastes generated
- Relatively low cost and **sustainable** solution

Next Steps

Next Steps

- Additional assessment of NAPL mobility on treated soils:
 - Frozen core residual saturation testing
- Longer term assessments needed:
 - Durability of treatment (sustained LNAPL immobilization)
- Applicability of technology:
 - Other COCs (BTEX, emulsified oils, DNAPLs, etc.)
 - Other stratigraphies (silts/clays, bedrock)
- Effect of technology on vapour suppression
- Further field trials / full-scale implementation at other sites
- Assessment of regulatory body acceptance

Acknowledgements

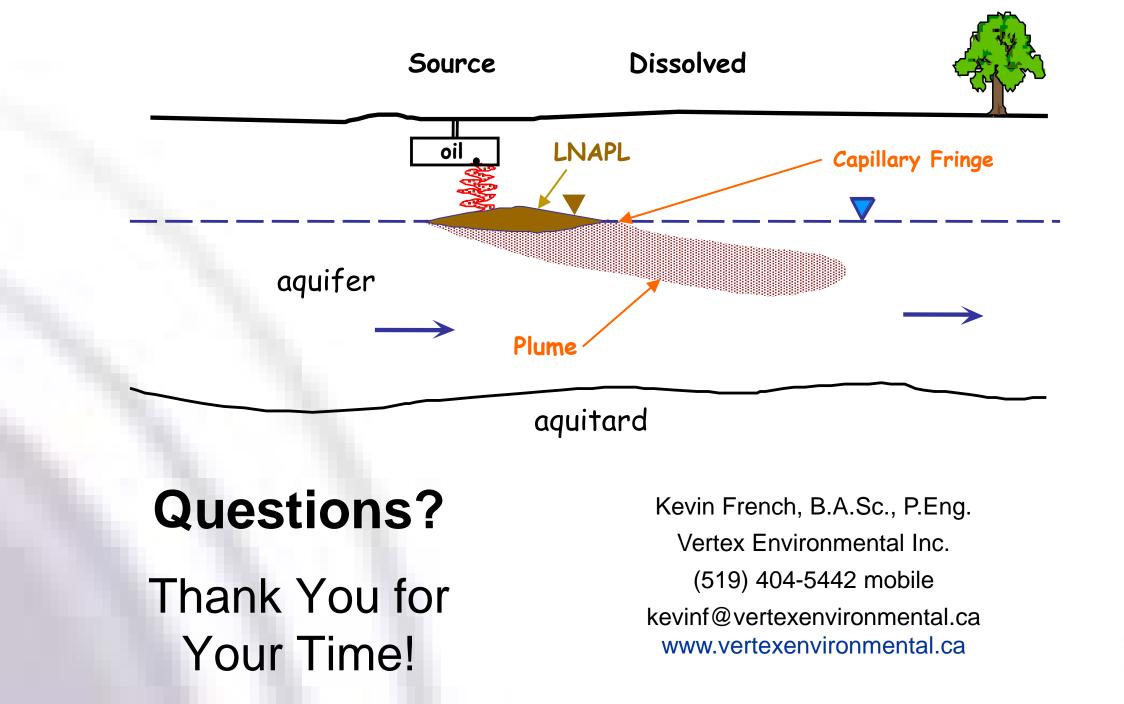
Acknowledgements

Technical Partner

Client

WATERFRONToronto

Project Partners



Project Funding

VERTEX