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200-UP-1 Interim ROD Context 

• Feasibility study for 129I determined no existing 
treatment technologies to achieve the federal 
drinking waster standard of < 1 pCi/L in the 
200-UP-1 Operable Unit at the Hanford Site

§ Current remedy is hydraulic control
§ Current 129I conditions in groundwater are 

relatively dilute: 1 to ~23 pCi/L

• Interim Record of Decision (ROD) dictated 
three elements be investigated

§ Close conceptual model data gaps for 129I
§ Investigate potential remedies for iodine 

(in situ and ex situ)
§ Consider whether an Applicable or Relevant 

and Appropriate Requirements (ARAR) 
Technical Impracticability (TI) waiver for
129I is appropriate



Plume Location
• Plume core located below the Environmental Restoration Disposal Facility (ERDF)

§ ERDF expansion coincides with plume trajectory

• Plume characteristics
§ Full plume: 3 km2 area, 1.2 km wide, 45 m thick
§ High concentration zone: 0.2 km2 area, 300 m wide, 30 m thick
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Presence of Stable Iodine (127I)

• Natural stable iodine (127I) is also present in the aquifer at much greater concentrations 
than 129I
§ Remedies are not specific for a particular iodine isotope
§ Recent resin analysis at pump-and-treat (P&T) facility identified concentrations of 127I:129I as 

1000:1
§ Concentration ratio (127I / 129I) is not constant within aquifer

• Source of 127I is unknown, but iodine commonly exists as a trace constituent of nitric acid 
§ Large volumes of nitric acid used during operations likely contribute to its high concentrations 

in groundwater
§ Presence of high 127I concentrations must be considered because they exhibit the same 

geochemical behavior 
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Iodine Speciation

• Iodate is the predominant species in 
Hanford groundwater

§ Iodate (IO3
-) is the prevalent form of 

iodine, ~70%
§ Iodide (I-), ~5%
§ Organo-iodine, ~25%

• Predominant species previously 
thought to be iodide

§ More mobile
§ Consideration for treatment technology

Neeway et al. 2019
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Technology Identification

• Literature review to identify promising technologies
• Laboratory scoping tests where further evaluation was needed
• Extended evaluation/scale-up to evaluate whether treatability testing was 

needed
§ Evaluation based on ability to meet the maximum contaminant level of 1 pCi/L in 

groundwater
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Technology Approaches
• Technologies for further screening organized into three categories

§ In situ sequestration
ü Calcite co-precipitation
ü Apatite sorption and co-precipitation
ü Organic sorption (chitin, lignin, humic acid)
ü Iron oxide sorption and co-precipitation

§ In situ mobilization to enhance P&T extraction efficiency
ü Dithionite

§ Ex situ extraction within P&T system
ü Ferrihydrite, bismuth oxyhydroxide, bismuth-cobalt-aluminum
ü Commercially available resins

• No microbial-based technologies selected for evaluation
§ Demonstrated to be insignificant process in the conceptual model evaluation
§ Operational difficulties associated with ex situ treatment (P&T)
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In Situ Sequestration Technology Screening
• Calcite co-precipitation 

§ 70% removal of iodate only 
• Apatite sorption/co-precipitation 

§ Minimal removal 

• Organic sorption (chitin, lignin, humic acid)
§ Only chitin effective for iodide

• Iron oxide sorption/co-precipitation 
§ ~98% removal of iodate 
§ ~70% removal of iodide
§ Iodate sorbs 
§ Iodate and iodide can be incorporated during 

ferrihydrite precipitation
§ Possible treatability candidate
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Enhanced Pump-and-Treat Technology Screening

• Dithionite
§ Up to 4X more and 3X faster leaching 

of iodine

• Possible treatability candidate
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Ex Situ Treatment Technology Screening

• Non-commercial materials
§ Ferrihydrite, bismuth oxy(hydroxide), 

and bismuth-cobalt-aluminum 
§ High affinity for iodate
§ Effective even in the presence of 127I 

(1000 times higher than 129I)
§ Possible treatability candidates

• Commercial resins
§ CHM-20: Hybrid Type 2 

dimethylethanolamine strong base anion 
resin containing CeO2-like phase

§ ASM-10-HP: Hybrid Type 2 
dimethylethanolamine strong base anion 
resin containing ferrihydrite-like phase

§ Possible treatability candidates

Material Tested Measured Kd (mL/g)
Ferrihydrite 3230

Bismuth (oxy)hydroxide 200,000

Bi-Co-Al 13,000

12 other compounds tested zero - 680

Batch test Kd values measured after 24 hr
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Treatability Test Decision Factors
• ROD requirements

§ If one or more viable technologies are identified, 
treatability tests will be conducted for those 
technologies

• EIC evaluation based on scale-up (e.g., batch to 
column)
§ Effectiveness

ü Removal from aqueous phase, rate of removal, 
and stability

§ Implementability
ü Effort type, potential hurdles, similarity to known 

processes
§ Cost

ü Relative to P&T
§ Maturity

ü Deployment timeline for FS readiness

Technology Readiness Levels
(TRLs)

Conceptual (1 – 3)
Lab Proof of Concept (4 – 6) 
Scale-up to Maturity ( 7 – 9) 

Category
Category Assessment:

General
Assessment

Data 
Pertaining 

to Category

Not recommended
Promising
Recommended

Evaluation KEY
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In Situ: Iron Oxide Precipitation

TRL 4

FS Viability

§ Performance /  
deployment 
uncertainties 

§ Low TRL

• No demonstrated 
in situ approach

TRL 4

Potential Viability

§ Low/medium 
readiness

§ Performance /  
deployment 
uncertainties 

Needs 
DevelopmentE I C

Conclusion
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Enhanced P&T: Dithionite

TRL 6

FS Viability

§ Low/medium readiness
§ Deployment 

uncertainties
§ Secondary effects of 

treatment 

• Poor performance and 
implementability and no 
demonstrated in situ 
approach

Significant 
Issues

TRL 6

Potential Viability

§ Low/medium readiness
§ Deployment 

uncertainties
§ Secondary effects of 

treatment 

I CE

Conclusion
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Non-Commercial Resins: Ex Situ Pump-and-Treat

TRL 7

FS Viability

§ Resin configuration 
uncertainties

§ Manufacturing 
timeline uncertain

• Significant uncertainties 
associated with 
technology development 
[poor column 
performance for custom 
(PAN) beads]

Conclusion

TRL 7

Potential Viability

§ Good material 
performance

§ Plume core beneath 
ERDF, hindering 
implementability

§ High cost due to 
inefficient well network

E CI
Currently

Not
Available
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Commercial Resins:  CHM-20 and ASM-10-HP

• Column testing scale up
§ 200W groundwater 

supplemented with iodate 
(100 ppb) – same order of 
magnitude as field 
concentrations of 127I

§ Flow rate = 25 mL/h

• Capacity determined at 3% 
breakthrough
§ Based on reaching 1 pCi/L 

standard
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Commercial Resin Column Test Results

• 3% breakthrough occurred at ~125 pore volumes for both resins
• Pulse of iodate in effluent (C/Co > 1) shows some likely interaction of the resin 

and the groundwater constituents (possibly nitrate or carbonate)
• Loading: Column ~10 µg-iodine/g-resin; Batch ~200 µg-iodine/g-resin

• Performance is marginal due to 
low capacity
§ Iodine: ~1L-treated/g-resin
§ Uranium: ~100L-treated/g-resin
§ 99Tc: ~10,000L-treated/g-resin

• Groundwater constituent 
interactions would need to be 
addressed



Commercial Ex-Situ: Pump-and-Treat

TRL 7

FS Viability

§ Low capacity
§ ERDF interferences
§ Relative cost driven 

high by ERDF 
interferences and low 
capacity

• Poor technical practicability
• Resin performance is marginal

• Low capacity
• Sensitivity to groundwater 

constituents
• Plume core beneath ERDF

Conclusion

Currently
Not

Available
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Technology Evaluation Conclusions

• Practicability of all candidate technologies was low, driven by site and 
contaminant properties that hinder effectiveness and/or implementability of the 
technologies

• Effectiveness-Implementability-Cost evaluation included technology maturity
§ CERCLA process requires treatability testing for existing technologies that can be 

adapted for site-specific needs

• Technology evaluation results can be used to support consideration of a TI 
waiver 
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