

Low Probability Receptor Framework for Site Closure

DAVID WILLIAMS, PH.D., P.ENG.

REMTECH 2019 - OCTOBER 17, 2019

Overview of Presentation

- Introduction and objectives
- Site closure current options and limitations
- What is Low Probability Receptor (LPR) approach?
- Regulatory framework
- Benefits of LPR approach
- Future opportunities

Alberta Contaminated Sites Policy Outcomes

- Pollution prevention: Avoid impairment of, or damage to, the environment, human health or safety, or property
- Health protection: Take action on contaminated sites that is commensurate with risk to human health and the environment
- Productive use: Encourage remediation and return of contaminated sites to productive use

[Alberta Contaminated Sites Policy Framework, 2014]

Objectives

- Optimize effectiveness of industry's remediation and reclamation activities by:
 - Reducing overall environmental liability
 - Minimizing adverse human and environmental effects (e.g. greenhouse gas emissions, adverse health effects)
 - Simultaneously increasing environmental protection
- Uphold policy outcomes of Alberta's contaminated sites management framework

Current Closure Options in Alberta

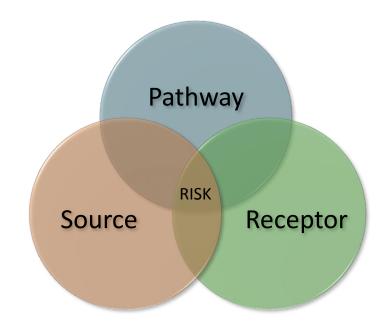
- Tier 1: Generic risk-based numerical guidelines. Eligible for regulatory closure
- Tier 2: Limited site-specific adjustment of Tier 1 guidelines
 - Pathway elimination or guideline recalculation. Eligible for regulatory closure
 - Site-specific risk assessment (SSRA). May be eligible for regulatory closure
- Exposure Control (i.e. risk management). Ineligible for regulatory closure
- Target level of human health and ecological protection is the same under all three Tiers

Basis for Current Tier 1/Tier 2 Guidelines

- Protective of receptors associated, by definition, with generic land use category reflecting "typical activities" on such lands
- Intended to protect sensitive receptors, and to apply at majority of sites
- Recognize that specific sites may differ from the generic land use definitions, necessitating a Tier 2 or alternative approach

Limitations of Current Closure Options

- Remediation is often driven by receptors such as dugouts, residences, water wells etc.
- Approaches are unnecessarily conservative where such receptors are absent and have a low probability of occurrence in the future
 - Hence "low probability receptors" (LPR)
- Considerable resources required to protect LPRs, with no benefit
- Increased environmental and human health impacts
- Current closure options do not allow site-specific receptor modification


Options for Site-specific Receptor Modification

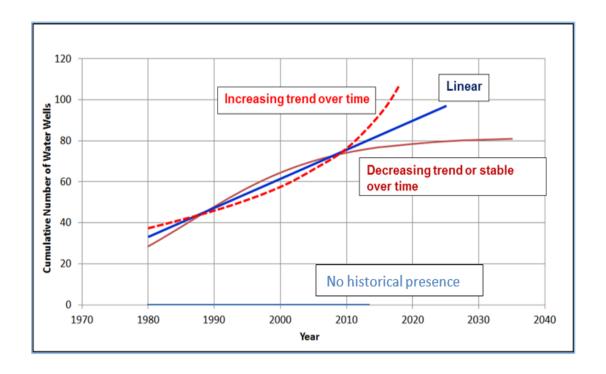
- Tier 2 SSRA may not allow for regulatory closure if receptor profile modified
- Emerging options under Tier 2, e.g.
 - Native prairie protocol
 - Ecological soil contact guidelines based on site-specific species
 - Other "outcome-based" approaches aimed at equivalent land capability
- Low probability receptor (LPR) approach

What is LPR Assessment?

- Focus on the receptors present and likely to be present
- There is no risk associated with receptors that are not present, and not likely to occur in the future

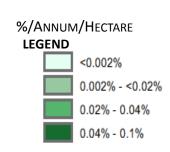
Current LPR Initiative

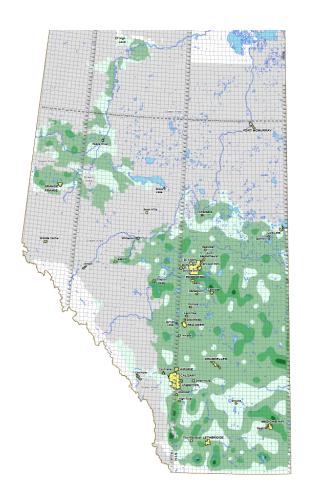
- Development of LPR identification and mapping tools
- Pilot projects in Alberta funded by PTAC and industry partners to validate approach and potential benefits
- Pilot study funded by BC OGRIS to investigate application of approach to BC
- Development of regulatory/implementation framework


LPR Mapping

- Determination of future probability of receptor based on rate of change in number of receptors with time
 - Spatial and temporal mapping of receptors
 - Determination of trends no historical presence, linear, nonlinear (increasing or decreasing rate)
- Sources of information
 - ABMI human footprint dataset (dugouts)
 - Alberta water well information database (water wells)

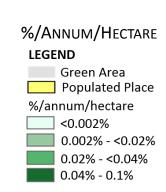
LPR Mapping (cont'd)

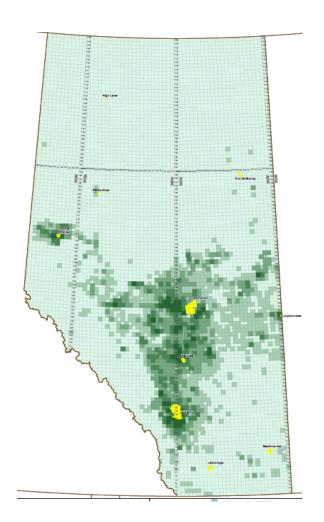

• Temporal trends



LPR Mapping (cont'd)

- Provincial zone mapping for "dugout" receptor
- Linear increasing trend

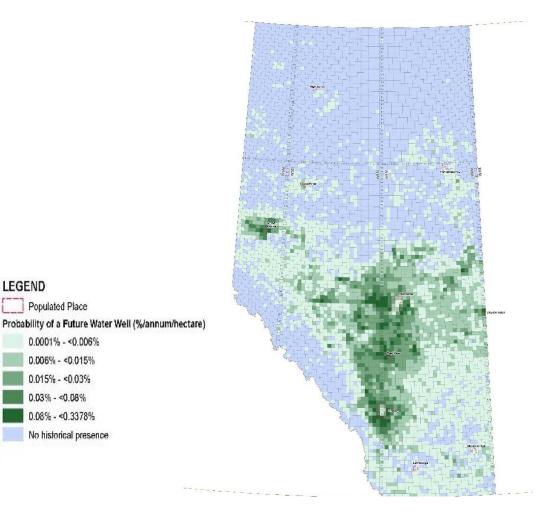




LPR Mapping (cont'd)

- Province-wide mapping for water well receptor (well depths 0-30 m)
- Linear increasing trend

LPR Mapping (cont'd)


Areas of province with no historical presence of water wells

LEGEND

Populated Place

0.0001% - < 0.006%

0.006% - < 0.015% 0.015% - < 0.03% 0.03% - <0.08% 0.08% - < 0.3378% No historical presence

Case Studies

Probability of future wells and dugouts

Case Study	Water Well	Dugout	Lifetime	Economic		
	0 - >30 m		Probability	Impact		
Site 1	0.025%	0.017%	0.6%	\$2,578,000		
Site 2	0.039%	0.004%	0.02%	\$33,200		
Site 3	0.050%	<0.0001%	0.04%	\$34,560		
Site 4	0.050%	<0.0001%	0.1%	\$29,000		
Site 5	0.0124%	<0.0001%	0.04%	\$725,000		

Case Studies (cont'd)

Liability reduction opportunity

Case Study	Remediation Volume (m³)		Remediation Cost (\$)		
	Conventional	LPR	Conventional	LPR	Savings
Remediation Budget			\$5,000,000	\$5,000,000	
1	19,400	1,500	\$2,794,000	\$216,000	92%
2	555	325	\$80,000	\$46,800	42%
3	640	400	\$92,160	\$57,600	38%
4	3,800	3,600	\$547,000	\$518,000	5%
5	6,175	1,140	\$889,000	\$164,000	82%
Remediation Opportunity (sites remediated)			6 sites	24 sites	

Case Studies (cont'd)

- Case Study #1 emission reductions due to reduction in soil volumes excavated, hauled and backfilled:
 - \circ CO₂ 240,500 kg
 - \circ NO_x 1,690 kg
 - ∘ PM 56 kg
 - ∘ THC 127 kg

Regulatory Framework

- LPR is consistent with policy outcomes of Alberta contaminated sites management framework
 - Pollution prevention, health protection, productive use
- LPR is consistent with, and an extension of, existing Tier 2 approaches
 - Basis for LPR is similar to assumptions involved in current land use definitions, and in other permitted Tier 2 modifications
- Potential regulatory challenges related to site closure based on LPR
 - Need for financial assurance
 - Need for mechanisms to track LPR-based closure and potential future changes to land use and receptors

Benefits of LPR Approach

- Benefits not only limited to reduced remediation cost (i.e. economic)
- Other benefits include environmental and social (reduction in impacts of remediation to human health and environment)
- Net benefit analysis (NBA) used to quantify benefits and costs and allow comparison of remedial approaches on a common platform
- Preliminary results demonstrate that the net benefits associated with LPR may be 4 to 5 fold greater than use of conventional approach

Future Opportunities / Direction

- Application in non-oil & gas settings, e.g. urban and/or brownfield sites
- Identification of low probability receptors / low probability pathways based on development trends, zoning etc.
- Examples include:
 - No DUA use in large urban areas
 - Absence of direct contact and ecological pathways beneath streets
 - Low likelihood of grade changes in stable developed areas
 - High density vs. low density residential zoning

Acknowledgements

- Millennium EMS Solutions Ltd.
- PTAC
- CAPP
- AEP/AER
- BC OGRIS

Questions?