The Shifting Paradigm of Natural LNAPL Biodegradation: **Time to Lose the Pumps?**

Matt Rousseau, Andre Smit, Drew Morgan | GHD October 2019

Thought-provoking (presumptuous?) discussion items:

- 1. NSZD: what is it?
- 2. NSZD: how is it measured?
- **3.** NSZD vs conventional approaches: things to think about
- 4. Case studies
- 5. Questions

NSZD What is it?

NSZD what is it?

NSZD what is it?

Examples of Site-Wide Average NSZD Rate Measurements at Field Sites				
		Site-Wide NSZD Rate (All Sites)	Site-Wide NSZD Rate (Middle 50%)	
NSZD Study	Number of Sites	(Gallons/Acre/Year)		Reference
Refinery terminal sites	6	2100-7700	2400-3700	McCoy 2012
1979 crude oil spill	1	1600	_	Sihota et al. 2011
Seasonal range		310-1100	_	Sihota et al. 2016
Refinery/terminal sites	2	1100-1700	1250-1550	Workgroup, L.A. LNAPL 2015
Fuel/diesel/gasoline	5	300-3100	1050-2700	Piontek et al. 2014
Diverse petroleum sites	11	300-5600	600-800	Palaia 2016
All studies	25	300-7700	700-2800	
Saturated zone electron acceptor biodegradation capacity	9	0.4–53	1.7–19	This paper (see Appendix S1)

Notes: Middle 50% column shows the 25th and 75th percentile values. To demonstrate the significance of methanogenesis, NSZD rates calculated from the biodegradation capacity of electron acceptors in the saturated zone, ignoring methanogenesis, are shown in the last row.

1,000 US gallons LNAPL depleted/acre/year
≈ 1 litre LNAPL depleted/m²/year
≈ 10,000 litres LNAPL depleted/ha/year
≈ 1 mm depletion in LNAPL thickness/year

Methanogenic Systems			
Methanogenic System	Equivalent LNAPL Degradation Rate (Gal/ Acre/Year)	Original Measurement	Reference
Anaerobic digesters	500,000	Methane generation ¹	Gerardi 2003
Ethanol release sites	20,000	Carbon dioxide, methane efflux ¹	Sihota et al. 2013
Landfills	10,000	Methane generation ^{1,2}	Spokas et al. 2006
NSZD at LNAPL sites	2000 ³	Carbon dioxide efflux	Table 3 ³
Wetlands	200	Methane flux to atmosphere ¹	Le Mer and Roger 2001
Peat	4	Methane ebullition ¹	Stamp et al. 2013

Representative Degradation Rates from Different

Note: All values rounded to one significant figure.

¹Adjusted to account for CO₂ production (see Appendix S1).

²Adjusted to account for oxidized methane in landfill covers (see Appendix S1). ³Representative median NSZD rate of about 1700 gallons/acre/year rounded to one significant figure.

LNAPL biodegradation: then and now

Item	Hydrocarbon attenuation in the 1990s-2000s	Hydrocarbon attenuation now
Nomenclature	Monitored natural attenuation (MNA) of dissolved plume	Natural source zone depletion (NSZD) of LNAPL body
Management focus	Plume length	Source longevity
Key constituents	Dissolved BTEX	All LNAPL constituents
Key biodegradation process	Electron acceptor mediated biodegradation	Methanogenesis
Key unsaturated zone biodegradation process	Volatilisation of LNAPL followed by aerobic biodegradation of hydrocarbon vapours	Anaerobic biodegradation (methanogenesis) of LNAPL followed by aerobic methane oxidation
Key saturated zone biodegradation process	Anaerobic biodegradation of dissolved BTEX	Anaerobic biodegradation of LNAPL by methanogenesis with off-gassing and ebullition
Key metric	Biodegradation capacity	NSZD rate
Key measurement	Upgradient vs. downgradient electron acceptors and byproducts	CO ₂ efflux; gradient of O ₂ consumption in vadose zone; thermal flux; compositional change
Representative attenuation rates	BTEX half-life of 2-4 years	NSZD rates of 1,000s to 10,000s L LNAPL ha ⁻¹ yr ⁻¹

adapted from Garg et al, 2017

How is it measured?

NSZD how is it measured?

Dynamic Closed (Flux) Chamber

- Active short-term sampling (≈ 15 minutes)
- Measure total CO₂
- Need to correct for background non-LNAPL CO₂ sources (e.g., plant respiration)
 - test locations away from LNAPL
 - ${}^{14}CCO_2$ trap results
- Surface cover can significantly affect results/interpretation
 - vegetated vs. non-vegetated
 - match surface cover types at background locations with LNAPL zone
- Screening tool

NSZD how is it measured?

Passive CO₂ Traps

- Passive longer-term sampling (≈ 2 weeks)
- Measure total CO₂, ¹⁴C unstable isotope
- ¹⁴C analysis provides built-in background correction
 - ¹⁴C half-life ≈ 5,600 years
 - modern/background CO₂ is ¹⁴C enriched
 - petrogenic CO₂ is ¹⁴C depleted
- Best practice = place CO₂ traps based on dynamic flux chamber screening results

NSZD how is it measured?

Subsurface temperature profiling

- Existing wells or dedicated installations
- Measure temperature at multiple depths through methane-oxidation zone
 - determine temperature gradients up and down
 - heat flux = temperature gradient x thermal conductivity of soil/rock
 - NSZD rate = heat flux / heat of reaction
- Need to correct for background temperatures
 - test locations away from LNAPL

NSZD vs conventional approaches The things to think about part

NSZD what can it do for us?

Characterization

- Confirm/quantify active natural attenuation
- Delineate LNAPL footprint
- Supporting line of evidence of LNAPL stability

Remediation/Management

- Baseline remedial strategy
 - NSZD rates commonly on the order of 1,000 10,000 litres of LNAPL depleted per hectare per year
 - addresses residual LNAPL
- Assessment of net environmental benefit of active remedies
- Performance/MEP metric
- Supporting line of evidence of appropriateness of long-term risk-based LNAPL management

Graphic courtesy of Julio Zimbron/E-Flux LLC

Conventional approaches what can they do for us?

- Relatively ineffective at reducing saturations into residual range
- Typically ineffective at risk
 mitigation
- Fractional removal over relatively short-timeframes

Conventional approaches what can they do for us?

MPE system recovering LNAPL at a Superfund site

	Item	Quantity
-	Total LNAPL recovered	394 litres 356 kg
	Average LNAPL recovery rate	0.2 kg/hour
	Cost	>\$1M >\$2,500/litre LNAPL >\$2,800/kg LNAPL
	GHG emissions – CO_2 , CH_4 , N_2O (based on electrical power consumption, USEPA eGRID emission factors)	>150,000 kg (>100 kg/hour)
	Environmental Footprint (based on USEPA SEFA spreadsheets, power consumption, manufacturing of materials, groundwater extraction, etc.)	143,000 kg CO ₂ e 7,300 kg NO _x +SO _x +PM 20 kg HAPs

NSZD vs conventional

Consideration	NSZD	Conventional
acts on residual LNAPL?	yes	limited
depletes LNAPL mass?	yes (mobile + residual)	yes (mobile only)
reduces LNAPL saturations?	yes (mobile + residual)	yes (mobile only)
reduces flux to dissolved/vapour phases?	yes	limited
environmental costs?	low	higher
remedial risk?	low	higher
\$\$\$	low (maybe)	higher (maybe)

NSZD Case studies

Location	Flux Chamber NSZD Rate Estimate (L LNAPL ha ⁻¹ yr ⁻¹)	CO ₂ Trap NSZD Rate Estimate (L LNAPL ha ⁻¹ yr ⁻¹)
A6	144,000	145,000
A9	116,000	125,000
B3	179,000	21,000
B7	0	10,000
D7	56,000	9,000
D9	164,000	73,000

Biogenic Heat NSZD Rate Estimates

26.0

1.4

Temperature Profiles as Measured

NSZD case studies USA

Questions

Matt Rousseau | matthew.rousseau@ghd.com October 2019

