Salt-Impacted Soil Treatment – A Project and technology Overview

October 2019

Presented by:

Byron Mazur, B.Sc., Manager, Client Service, Western Canada

Alexandre Myre, M.Sc., Project Manager, Western Canada

Introduction

Technology Overview

Full-Scale Application

Site Presentation

Treatment Objectives

Treatment Overview

Results

Next Steps

Technology Overview

- The technology has been developed over more than 10 years of R&D efforts.
- Engineered soil leaching process that targets salinity related contaminants (electrical conductivity [EC], sodium adsorption ratio [SAR], chloride).
- Englobe has developed proprietary methods for:
 - Characterization protocols to assess treatment potential;
 - Amendment mixes;
 - Irrigation strategies.
- The technology is patented in the USA and patent pending in Canada.
 - "Salt-Impacted Soil Treatment Process and System for Remediating a Salt-Impacted Soil".
 WO/2014/059540.

Technology Overview - Cont'd

- Impacted soil is leached with a solution of various amendment concentration to remove ions:
 - Precipitated;
 - Dissolved;
 - Adsorbed.
- Reduction of EC, chloride and SAR;
- Process water can be treated with reverse osmosis or disposed of in a deep injection well;
- Treatment duration varies based on pile height and soil type, but is designed to treat one batch per season;
- Volume of water and quantity of amendments are adapted to suit the remediation targets;
- Successful full-scale application in 2018. Two (2) ongoing projects in 2019 in Alberta and NWT.

Pilot Scale Treatment in Leduc. Ab., 2009

Technology Design

2018 Full-Scale Application – The Site

- Large site: ~150,000m³ of salt-impacted soil;
- Upstream/midstream oil:
 - Battery/Satellite
 - Well
- Generated water spills (salt water);
- Large volume of shallow impacted groundwater.

2018 Full-Scale Application—Site-Specific Treatment Targets

- Overall goal: site remediation;
- Chloride concentration of 370 mg/kg for underlying soil horizons (under 1.5 m) derived from SST calculation;
- "Good" rating category for topsoil for EC (2 mS/cm) and SAR (4);
- "Good" rating category for subsoil (up to 1.5 m in depth) for EC (3 mS/cm) and SAR (4).

2018 Full-Scale Application – Lab-Scale column Trial

- Lab trial conducted:
 - To confirm reaching treatment objectives;
 - To adjust the irrigation strategy.
- Initial Soil Results:
 - EC: 8.3 mS/cm;
 - SAR: 20;
 - Chloride: 1,400 mg/kg.
- Final Soil Results:
 - EC: 0.60 mS/cm (average) 0.54-0.68 (range)
 - SAR: 0.72-2.10 (range)
 - Chloride: <100 mg/kg (94 % chloride reduction)</p>

2018 Full-Scale Application – Schedule

- Installation of reverse osmosisFall 2017;
- Construction of treatment pad.....June 2018;
- Mob. of treatment equipment.....July 2018;
- Start-up of treament...... Aug. 2018;
- End of treatment...... Nov. 2018.

2018 Full-Scale Application – Water Treatment

- Used to treat impacted water from excavations;
- Deionized, clean water used to irrigate impacted soil;
- Clean/concentrate leachate from STF;
- Concentrate from RO was disposed of at a water disposal system adjacent to the site.

2018 Full-Scale Application – Pre-Treatment Results

- EC: 3.3 to 9.3 mS/cm (average 4.5 dS/m);
- **SAR:** ranged from 1.6 to 17.7;
- Chloride: 440 to 2,270 mg/kg (average 804 mg/kg).
- 32% >75microns = fine soil

2018 Full-Scale Application – Final Results

- **EC** ranged from 0.4 to 1.9 mS/cm (average of 1.0 mS/cm):
 - **79** % reduction for overall EC value, reduction of EC in all samples.
- Chloride ranged from 13 to 287 mg/kg (average of 91 mg/kg):
 - **89** % reduction in overall chloride concentration chloride reduction in all samples.
- **SAR** ranged from 2.1 to 16.6:
 - 10 out of 19 lots still showed a SAR value above four (4). The soil was strategically backfilled to account for the residual EC and SAR.

2018 Full-Scale Application – Final Results – Con't

- ■Treatment volume: 2,750 m³ soil. All the soil met targets based on the depth it was to be backfilled at.
- 4,500 m³ of water used for treatment
 - 2,500 m³ of leaching water treated and recycled for treatment;
 - 2,000 m³ of impacted GW treated and use for treatment.
- 2,000 m³ of brine water (heavily impacted) has been disposed of throughout the treatment.
- Chloride target has been surpassed process will be optimized in the future – reduction of water used in the process.

2018 Full-Scale Application – Why did it Work?

Large Site:

- Multi-year treatment justifying investing for the construction of a STF;
- Space available for the construction of a STF.
- Implementation of the Reverse Osmosis:
 - Impacted GW is being treated and reused for treatment;
 - Concentrated leachate from soil treatment is treated, thus reducing water disposal.
- Water Disposal System Adjacent to site
- Dig and dump option was not a good option:
 - Would require huge volumes of soil to be moved;
 - Shallow impacted groundwater that needed to be managed.

Next Steps

- ■2019 Season at the site 5,475 m³ of soil are currently being treated. Remaining few weeks of treatment;
- Possible expansion of the STF in future years over areas of backfilled treated soils;
- Ongoing development and optimization of process;
- Further developments to address both hydrocarbons and salt contamination.

Technology Overview – Additional Information

- Applicability of the technology
 - The technology can technically be applied to most soil types and levels of contamination;
 - Fully scalable;
 - It provides a sustainable approach for the remediation of salt-impacted sites:
 - Reduces off-site disposal;
 - Reduces importation of clean backfill;
 - Can recover impacted top soil.
 - Treatment volume is only limited by:
 - The size of the STF;
 - The duration of the treatment season (>0 °C ambient temperature), one batch per year.

Summary

- First completed full-scale application of the Englobe's technology;
- Only salt-impacted soil treatment technology commercially available;
- Provides a viable solution to remediate large salt-impacted sites;
- Can target high levels of EC, SAR, and chloride contamination even in fine-grain soil.

