Ending landfill post-closure – a rational approach to facility end-of-life care

Remediation Technologies Symposium October 2019

Overview

- Landfill life cycle
- Approaches to landfill post-closure
- Overview of landfill functional stability
- Data collection requirements and assessment
- Links to outcome-based closure for other facilities

Fundamental objectives

- Alberta contaminated sites framework is based on three fundamentals
 - Pollution prevention
 - Health protection
 - Productive use
- Reasonable fundamentals for landfill post-closure

Landfills in Alberta

- Municipal, industrial, and oilfield landfills
- AER vs AEP
- Directive D058 vs Standards for Landfills

Landfill Post-Closure in Alberta

- Standards for Landfills in Alberta, 2010
- Post-Closure Care Plan
- Minimum 25 years
- Cannot end until groundwater and gas concentrations in compliance, and leachate meets groundwater quality limits

Landfill Post-Closure in Alberta

- 'One size fits all' approach
- Landfills not eligible for reclamation certificates (not specified lands)

Post Closure outside of Alberta

- Ontario minimum of 25 years
- Post Closure Period defined as

period of time within which the landfill will produce contaminants at concentrations that could have an unacceptable impact if they were discharged from the site

Post Closure outside of Alberta

- USA default post-closure period is 30 years
- Can be varied to meet the requirements of protection of human health and the environment

Methods for ending Post-Closure

- Time based
- Perpetual care
- Range of timeframes based on facility characteristics
- Waste stabilization target
- Performance-based (Functional Stability)

Functional Stability

"A landfill is functionally stable when it does not pose a threat to human health and the environment at the point of exposure in the absence of active control systems"

Functional Stability

- Risk-based analysis of landfill contaminants (leachate and gas)
- Define targets based on risk analysis
- Monitor to confirm targets are met
- Assumes generation of leachate and gas are predictable over long term

Risk analysis

- Need to understand existing and future receptors
- Assumes maintaining final cover system and passive control systems

Potential end point categories

- Leachate quantity and quality
- Landfill gas quantity and quality
- Groundwater quality
- Surface water quality
- Final cover integrity including settlement

Custodial care

- Passive control systems
- Minimum maintenance costs
- Various potential land uses

Steps to apply Functional Stability

- Assessment of current data collection and identification of gaps
- Risk analysis to determine target end points
- Analysis of monitoring data to develop statistically significant trends

Steps to apply Functional Stability

- Identification of management changes to reduce post-closure period
- Implementation of management changes
- Monitoring and assessment of predicted performance

Steps to apply Functional Stability

- Determination of end of post-closure based on monitoring data
- Shift to passive control systems
- Monitoring to assess performance of passive control systems
- Custodial care

Outcome-based closure of contaminated sites

- Similarities and differences to landfill closure
- Contaminated site clean-up often includes landfilling of contaminated material
- Landfill is one of final resting places for material from clean-up activities

Why is this important?

- Provincial inconsistency
- Current approach to defining the end of post closure for landfills in Alberta is practically unachievable
- Prevents appropriate planning and recognition of site characteristics

Why is this important?

- Functional Stability approach provides benefits of potentially shorter postclosure periods and reduced costs
- Outcomes based on site characteristics
- Consistent with Alberta approach to other activities
- Avoids over-stating liability

Landfill Variables

- Waste types (C&D, MSW, Soils)
- Size
- Physical setting (geology, climate, etc.)
- Proximity to receptors
- Filling practices (conventional MSW vs batch fills)

Landfill Variables

- Environmental protection systems (leachate collection, gas collection, base liner, cap, etc.)
- End use objectives

Summary

- End-of-life objectives should be rational and achievable
- Existing fundamentals of pollution prevention, health protection and productive use are reasonable
- One size does not fit all risk analysis should be part of liability assessment

