Evaluation of Membrane Technologies for Ex-situ Remediation of Groundwater Impacted with Sulfolane and Several Co-contaminants Including Chloride Presenters: Natalie Lippa, M.Sc., P.Geol and Farshad Mohammadtabar, M.Sc.

Problem Statement

- Sulfolane is a natural gas sweetening compound designed to remove H₂S, CO₂ and other impurities from the gas stream
- Sulfolane is highly water soluble and has leached into groundwater beneath some sour gas processing facilities in Western Canada
- This research evaluates membrane-based processes for ex-situ treatment of groundwater containing chloride, sodium, total dissolved solids, metals, diisopropanolamine, and sulfolane exceeding regulatory guidelines (AEP 2019)^[4]

Problem Statement

• The objective of testing membrane technology is to develop an optimized/efficient process for contaminant removal, energy consumption and operational maintenance

A remediation trench was previously used at the subject site to mitigate the environmental impact, but is currently suspended; there is no current onsite treatment or disposal system, so all impacted water would need to be trucked off-site to a disposal well

Objectives and Goals

- The main contaminants of concern were sulfolane and chloride (TDS)
- Applying membrane technology promotes water reuse, returning it back into the hydrologic cycle
- The treated wastewater is intended to be used for groundwater recirculation

Why Water Treatment

Membrane technology

Membrane Processes

Membrane Fouling

G Fouling is the deposition of contaminants on the membrane

 \Box Reduces the efficiency of process by decreasing the permeate water flux

Materials and Methods

- Initial tests used synthesized trench water
- Later tests used two different bulk samples of site trench water (Summer 2018 and Spring 2019)
- All tests were conducted in a temperature controlled environment (7°C)
- Sulfolane concentration was spiked to be present in the range from 17 to 34 mg/L for bench tests

9

Materials and Methods

- Total dissolved solids (TDS) removal was estimated from conductivity monitoring results
- Hardness concentration was measured with a hardness analyzer
- Concentration of sulfolane was analyzed by Bureau Veritas (BV) Laboratory.
- All of the metal ions were analyzed using inductively coupled plasma (ICP) analysis
- Anions were analyzed by ion chromatography

Characterization of trench water

Dissolved Parameter	Unit	Summer 2018 Bulk Trench Sample	Average Trench Water – Fall 2010 Monitoring Data	Groundwater Guideline ^[1]	
Conductivity	μS/cm	1220	3466	Not Specified	
TDS	mg/L	7 80ª	2800	500	
рН		7.1	7.6 ^b	6.5-8.5	
Mg	mg/L	37	61	Not Specified	
Са	mg/L	170	317	Not Specified	
Na	mg/L	193	337	200	
CI	mg/L	500	913	120	
NO ₃ -N	mg/L	1.4	0.043 ^b	3	
Ва	mg/L	1.81	3.57	1	
Si	mg/L	8.95	6.93	Not Specified	
Sulfolane	mg/L	3.6 ^c	16.4	0.09	

^aEstimated from conductivity^[7]. ^bWhere no 2010 results available, historical average listed. ^cSulfolane concentration was depleted in storage thus for all experiments sulfolane was spiked to a concentration range of 17 to 34 mg/L.

Design of Experiment: Part 1

Initial tests using a synthesized trench water:

- Testing nanofiltration (NF90) and reverse osmosis (BW30 & SUEZ) commercial membranes
- Studying the water flux and fouling behavior of the filtrations
- Analyzing the contaminant removal rate of the commercial membranes

Membrane Bench Test (Cross-Flow Filtration)

Synthesized Trench Water Filtration

Effect of flowrate

Summary of initial results

- The SUEZ (RO) membrane showed the highest sulfolane removal rate
- Increasing the flow rate could potentially increase the contaminant removal
- The one-stage membrane processes could not bring down the sulfolane concentration to the desired level

Design of Experiment: Part 2 – bulk trench water

One-stage filtrations of bulk trench water

Two-stage filtrations of bulk trench water

Properties of treated water samples

Parameter	Unit	Summer 2018 bulk trench sample	NF Permeate	RO Permeate	NF/NF Permeate	NF/RO Permeate	Groundwater Guideline ^[1]	
Conductivity	μS/cm	1220	109	36	13	31	Not Specified	
TDS	mg/L	780ª	70 ^a	23ª	8.3ª	20ª	500	
Са	mg/L	170	0.94	0.75	0.70	0.63	Not Specified	
Mg	mg/L	37	0.23	0.20	0.10	0.02	Not Specified	
Na	mg/L	193	11.1	5.5	2.2	0.81	200	^a Estimated from
Cl	mg/L	500	35	25	20	7.0	120	conductivity ^[7] . ^b Sulfolane
NO ₃ -N	mg/L	1.4	0.0	0.0	0.0	0.0	3	concentration was depleted in storage thus for
Ва	mg/L	1.81	0.007	0.006	0.004	0.004	1	all experiments sulfolane was
Si	mg/L	8.95	0.070	0.150	0.000	0.000	Not Specified	spiked to a concentration range of 17 to 34
Sulfolane	mg/L	17 to 34 ^b	0.570	0.490	2.20	0.063	0.09	mg/L.

Conclusions of Bench Study

- The two stage NF-RO could provide a high quality water for groundwater recirculation
- The recommended operating pressure for NF90 is 110 psi to avoid fouling
- Increasing the flow rate of the feed water can improve the contaminant removal rate
- All of the pressure driven NF and RO tests were efficient in removing chloride and metal ions

Preliminary Cost Analysis

Recommendation and Future work

A Marine an ere a der ander alle at

- Other commercial membranes could be tested for the treatment of this wastewater
- Potential to develop a hybrid process using membrane separation as a pre-treatment, and to address inorganic impacts, followed by conventional treatment of residual sulfolane (biological or chemical)
- An on-site pilot study could be conducted to optimize process and further evaluate costs and benefits prior to moving to a full scale system

Co-Authors

University of Alberta – Advanced Water Research Lab

- Farshad Mohammadtabar
- Dr. Mohtada Sadrzadeh

Matrix Solutions Inc.

- Sheila Luther
- Natalie Lippa
- Troy Lapohn
- Adam Stark

Acknowledgements

Confidential client

Natural Science and Engineering Research Council

University of Alberta – Advanced Water Research Lab

25

Matrix Solutions Inc.

Bureau Veritas (BV) Laboratory

References

- 1. Alberta Environment and Parks (AEP). 2019 Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. Edmonton, Alberta. Effective January 10, 2019.
- 2. cen.acs.org
- 3. files.abovetopsecret.com
- Hurwitz, G.; Pernitsky, D.J.; Bhattacharjee, S.; Hoek, E.M.V. Targeted Removal of Dissolved Organic Matter in Boiler-Blowdown Wastewater: Integrated Membrane Filtration for Produced Water Reuse. Ind. Eng. Chem. Res. 2015, 54, 9431– 9439.
- 5. Sadrzadeh, M.; Hajinasiri, J.; Bhattacharjee, S.; Pernitsky, D. Nanofiltration of oil sands boiler feed water: Effect of pH on water flux and organic and dissolved solid rejection. Sep. Purif. Technol. 2015, 141, 339–353.
- 6. abctlc.com
- 7. Bohn, H.L., McNeal, B.L., and O'Connor, G.A. 1985. Soil Chemistry. Second Edition. John Wiley and Sons. New York. 341 pp.

