

October 16, 2019

Biosparge Pilot Testing for Aerobic Degradation of Sulfolane

Trent Key Jennifer Harder

Agenda

Introduction Background Pilot Test Design Field Results Ongoing Efforts Conclusions

Background

Sulfolane Use Onsite

- Industrial solvent used as a sweetening agent in sour gas processes
- Historically used onsite from the 1960s to the 1980s
- Biodegradation Pathways:

1) C₄H₈O₂S + 6.5O₂ → 4CO₂ + 3H₂O + 2H⁺ + SO₄²⁻ (Greene et al., 2000)
2) 5C₄H₈O₂S + 18NO₃⁻ → 20HCO₃⁻ + 9N₂ + 5HS⁻ + 7H⁺ + 4H₂O (Greene et al., 1998)
3) C₄H₈O₂S + 9MnO₂ + 5HCO₃⁻ → 9MnCO₃ + 4H₂O + HS⁻ + 40H⁻ (Greene, 1998)
4) C₄H₈O₂S + 10H₂O + 18Fe³⁺ → S²⁻ + 18Fe²⁺ + 4HCO₃⁻ + 24H⁺ (Greene, 1999)
5) 4C₄H₈O₂S + 4H₂O + 9SO₄²⁻ → 13HS⁻ + 16HCO₃⁻ + 11H⁺ (Greene, 1999)
6) C₄H₈O₂S + 1.5H₂O → 1.75CO₂ + 2.25CH₄ + H₂S (Greene et al., 1998)

Complex Fracture Bedrock

Pilot Test Design

Objectives

- What is the goal?
- How do we measure the success of the pilot?
 - 1. Increase dissolved oxygen concentrations
 - 2. Decrease dissolved plume sulfolane concentrations
 - Provide evidence to support *in situ* biodegradation is the dominant mechanism of decreased sulfolane concentrations

Biosparge System Design

Biosparging and Monitoring Well Network

wells

- Biosparging Wells
 - 12m Interval 3 wells
 - 17m Interval 3 wells
- Monitoring Network
 - 7m Interval 8 wells
 - 12m Interval 14 wells
 - 17m Interval 14 wells

Biosparging and Monitoring Well Network

Groundwater Monitoring Program

- Sulfolane and Dissolved Oxygen
- Traditional Geochemistry
- Microbial Testing

Field Results

Dissolved Oxygen Concentrations – 17m Interval

E&PS 🕓 GOLDER

Biodegradation – Total Bacteria via qPCR (16S rRNA)

Biodegradation – Sulfolane Degrading Bacteria Plate Counts

E&PS

Biodegradation of Sulfolane – Colony Identification

Ongoing Efforts

Sulfolane Treatability Study #2

- Three treatments groundwater inoculated, Acidovorax isolate inoculated, uninoculated killed controls (negative controls)
- 6 time steps per treatment

🕟 GOLDER 🚽 SIREN

E&PS

- Incubated at room temperature at 100 rpm
- Sterile foam stoppers used to allow gas headspace exchange and avoid oxygen limitation
- Samples analyzed for sulfate as a proxy for sulfolane degradation (analytical cost)

 $C_4H_8O_2S + 6.5O_2 \rightarrow 4CO_2 + 3H_2O + 2H^+ + SO_4^{2-}$ (Greene et al., 2000)

19

Aerobic Treatability Study – Groundwater Inoculum

E&PS GOLDER SIREM $C_4H_8O_2S + 6.5O_2 \rightarrow 4CO_2 + 3H_2O + 2H^+ + SO_4^{2-}$ (Greene et al., 2000)

Microbial Community Analysis

- Quarterly samples collected for community analysis (16s rRNA gene)
- Coupled to culture-based isolation effort
- Goal:
 - Track increases/decreases of key sulfolane degraders in count and abundance over space and time
- Key sulfolane-degrading genera being tracked
 - Acidovorax
 - Acinetobacter
 - Pseudomonas/Stenotrophomonas
 - Rhodoferax
 - Shinella

Conclusions

Conclusions

- Objectives:
 - 1. Increase dissolved oxygen concentration
 - 2. Decrease dissolved plume sulfolane concentration
 - 3. Provide supporting evidence that *in situ* biodegradation is occurring due to biostimulation with oxyg
- Further work needed to identify and track dominant sulfolane degraders to show enhancement of *in situ* biodegradation

Questions?

Extra Slides

