

Geosyntec consultants

engineers | scientists | innovators

Engineered Phytoremediation of Contaminated Aquifers – Adapting a Natural System to Meet Remedial Goals

Ron Gestler, James Linton, Karen Berry-Spark (Geosyntec Consultants) Edward Gatliff, Paul Thomas, (Applied Natural Sciences)

The TreeWell® System: Key Benefits

- Patented by Dr. Edd Gatliff of Applied Natural Sciences
- Targets <u>specific</u> groundwater by directing root growth downward
- Bioreactor effect in soil column of unit: reducing and oxidizing zones
- Effectively treats a wide range of contaminants
- Pre-treatment option (reactive treatment media ZVI, etc.)
- Optimizes growing conditions
- Highly adaptable can be tailored to specific site conditions
- <u>Active</u> treatment in a <u>passive</u> manner

Why Use the TreeWell System?

Limitations of Conventional Phytoremediation

- Target groundwater too deep
- Site soils too poor, too compacted
- Contaminant concentrations too high
- Reliance on precipitation

Benefits of Engineered Phytoremediation using the TreeWell System

- Control plant growth, manage site conditions and target the zone of remedial effect
- For GW as deep as 15 meters bgs (or more)
- Treat high contaminant concentrations
- Can reduce the time to meet remedial goals
- Allows plants to THRIVE

TreeWell Phytoremediation at Illinois Site

• Former refrigerant manufacturing facility

- Carbon Tetrachloride plume
 with DNAPL
- Primarily low K glacial till with sporadic sand zones
- Existing P&T system very inefficient, expensive (batch process)
- *TreeWell* phytoremediation system installed in 2015
- IEPA approved disabling P&T system in 2016; now abandoned

Geosyntec Consultants | RemTech 2019

Conceptual Design for Integrated Remediation

Modeled Groundwater Flow

Initial groundwater modeling performed prior to system installation

51 TreeWell units installed in 2015; additional 28 units in 2017

Excellent correlation of model predictions to observed hydraulic control

Hydraulic Control of CCL4 Plume

TreeWell units capturing plume and hydraulic control has been established

Groundwater Flow – After Two Seasons of Tree Growth

Nov. 2017

Hydraulic Control Maintained Through Mid-Winter (Feb 2018)

Phytoremediation vs. P&T

Pump & Treat (Source Containment) System Operational Years (1980 – 2016)

<u>100,000 Gallons per year</u> – estimated maximum removal rate of groundwater or average of < 275 gallons per day (GPD) (<0.2 gpm)

Five pumping wells in operation - no significant/observable groundwater hydraulic influence (2013-2016 period)

<u>\$75K</u> - Average Annual Cost (approx). of O&M 2013 - 2016 (excluding treatment and groundwater monitoring)

P&T System was ineffective

System idled in 2016 during proof of concept/pilot of Engineered Phytoremediation System

Engineered Phytoremediation

>1,00,000 gallons per year is estimated current extraction rate via engineered phytoremediation (3 gpm +/-)

MAKE .

<u>79 TreeWell Units</u> - now provide <u>hydraulic control</u> of plume (51 trees in 2015 and 28 in 2017)

<u>\$22K</u> - Average Annual Cost of O&M (2016 - 2018)

<u>P&T System shut down in 2016; now</u> <u>dismantled</u>

Trees have demonstrated tolerance to CCL4

White States and the second second second

Results To-Date Summary

The *TreeWell* phytoremediation system has:

- 1) Obtained hydraulic control of the plume in just two growing seasons;
- 2) Enabled abandonment of the P&T system; and
- 3) Supported excellent tree health

Next Steps...

- Complete the ERH remediation at source area
- We will have then met IEPA goals
- Apply for conditional closure (anticipated in 2020)

TreeWell Phytoremediation at North Carolina Site

 Modeling conducted to determine number and placement of *TreeWell* units to prevent discharge to adjacent stream

- Former auto part manufacturing facility in North Carolina
- CVOC and 1,4-dioxane plume
- Saprolite over fractured bedrock
- Existing system consisted of a series of ART[®] wells with ozone injection – excessive O&M costs due to well fouling
- System not effective in low permeability saprolite

Concept Development of Phyto-Barrier

FOCUSED FEASIBILITY STUDY

- Rebound study
- Aquifer performance testing
- Vertical Profile Sampling
- Groundwater modeling to determine capture requirements
- Results indicated phytoremediation would be effective

CONCEPTUAL DESIGN

- A phyto-barrier to reduce overall flow to creek
- Install planting units along creek boundary adequate to meet RGs
- Groundwater modeling revisited

Phytoremediation System Installation – Spring 2015

Spring 2015 Installation of 150 units adjacent to creek

- 1.1-meter units drilled to 5- to 7-meter depth
- Three native species:
 - Golden Willow (Salix alba)
 - Tulip Poplar (*Liriodendron tulipifera*)
 - London Plane (Platanus acerifolia)

Outcome

- By end of second growing season inward gradient to the units
- Trees are now well-established, surface water concentrations have not exceeded NC surface water criteria
- 2016 Regulatory approval of Risk-Based Closure with phyto system as engineering control
- ART[®] System has been dismantled
- Currently negotiating conditional NFA with NC

Canadian *TreeWell* Phytoremediation Projects

- Multiple sites in Ontario and Alberta
- Pilot study to evaluate technology for PCB-impacted groundwater

Central Florida 1,4-Dioxane Site

Site Background

- Manufacturing facility in Central Florida
- CVOC, 1,4-dioxane and arsenic groundwater plume in fractured bedrock
- Initial remedy: Long-term pump & treat system with UV/Peroxide
 - >\$300K/Year O&M costs
 - >20 Years to meet Remedial Goals

TreeWell System Installation & Outcome

- 154 *TreeWell* units planted in 2013
- Cost to implement: about the same as one year O&M for the P&T system
- Hydraulic capture demonstrated by 2014 P&T system idled and dismantled
- Groundwater concentrations significantly reduced

Central Florida 1,4-Dioxane Site

- Comparison of GW flow at time of *TreeWell* system installation (Yellow) vs. 18 months post-installation (Blue)
- Gradient reversal in only two growing seasons
- Experience at Sarasota with predicted groundwater response versus actual has been applied to modeling of other sites with similar success

All indicated concentrations in µg/L

Dissolved-phase concentrations have decreased significantly and rapidly since implementation

Central Florida Modeled vs Actual Groundwater Flow

Sarasota - Performance of Phytoremediation System Actual versus Groundwater Model Prediction (cont'd)

Central Florida Modeled vs Actual Groundwater Flow

Sarasota - Performance of Phytoremediation System Actual versus Groundwater Model Prediction (cont'd)

Project Summary

In other words, an ineffective and costly P&T system was replaced with effective, low-cost phytotechnology...

Resulting in:

- Significant savings to the client
- A happy client and regulator

No Further Action granted in 2016

Site Rehabilitation Completion Order officially closed the site in 2018 Geosyntec Consultants | RemTech 2019

Stand and the state

SW Louisiana DNAPL Site

TreeWell Technology Effective at Source Areas

Site Background

- Former waste disposal facility
- Interbedded clay and sand
- Total VOCs at source in 1000s mg/L
- Chlorinated ethenes, ethanes, and methanes
- Initial remedy: Bioremediation, but ineffective at source areas

TreeWell Pilot Test

- Pilot Test initiated in 2015 to evaluate effectiveness of *TreeWell* technology, pre-treatment options and phytotoxicity
- · Identify best tree species for full-scale system

SW Louisiana DNAPL Site

Based on Results To-Date:

- Additional units have been installed to target deeper GW units
- Similar system was installed at nearby sister site

Promising Results:

- Greater than 10X decrease in CVOC concentrations in all 3 treatment configurations for both High & Low Plots
- As much as 5 orders of magnitude decrease in CVOCs in some units
- ZVI appears adequate to reduce CVOCs to below phytotoxic levels
- Overall plant growth and health good

Summary of Phytoremediation Technology: Key Benefits

- Plant-based remediation technology can be very effective
 - Particularly targeted system such as *TreeWell* tech
- Highly **adaptable** to specific site conditions and contaminants
- Applicable to emerging contaminants
- Applicable to many sites: cold climates, dry climates, deep and/or confined aquifers, sites with covers/caps, etc.
- Potential of **significant cost-savings** over conventional treatment options: Typical TW Unit cost = \$2,000 to \$5,000
- Great alternative to P&T systems
- Green & Sustainable technology
- Well-accepted by regulatory community
- Numerous secondary benefits

Thank You

ALL OF THE ALL DE LA LOUGH

Contact Information: Ron Gestler (925) 278-8688 rgestler@geosyntec.com TreeWell Technology Information: https://Geosyntec.com/treewell