Leading Science · Lasting Solutions

Combined In Situ Chemical Oxidation and Stabilization/Solidification for Full-Scale Remediation of a Coal Tar Source Area

RemTech

2019

Sandra Dworatzek, Jeff Roberts, Michael Healey, and Phil Dennis

Acknowledgments

Geosyntec^D consultants Chris Robb, Jule Carr, and Dogus Meric **Geosyntec**

COWI

Torben Højbjerg Jørgensen and Lars Nissen - **COWI**

Anna Toft and Line Mørkebjerg Fisher Capital Region of Denmark

Kim Jensen - Arkil

Søllerød Gaswærk Site, 1954

Ortafolos (DD08land): CDVI har den fuide ophavenet til de ortafolos (DD08land), de viels som baggundskort. Denne funktion, med ortafolos and baggundskort, må defor i kan anvendes at Miljaministerist, regioner og kommuner med tilherende institutioner, der er part 1 Danmarks Miljaportal, i fortofiske med de pågaleksden kritistichenes myndighedekshand tilg indenden miljaministerist anvendes er bei kommer entofiske tillad og stil kom returfordiske med de pågaleksden kritistichenes de stilla og stil kom returfordiske med de pågaleksden kritistichenes myndighedekske funktioner myndighedekske bisk tillad og stil kom returfordiske med de pågaleksden kritistichenes myndighedekske bisk tillad og stil kom returfordiske med de pågaleksden kritistichenes myndighedekske bisk tillad og stil kom returfordiske med de pågaleksden kritistichenes de pågaleksden kritistichenes myndighedekske bisk tillad og stil kom returfordiske med de pågaleksden kritistichenes og stil ko

Why In Situ Chemical Oxidation (ISCO) + In Situ Stabilization / Solidification (ISS)?

- Treats all waste on-site.
- Rapid implementation.
- In U.S.A., ISS typically is applied alone. ISS is a mature technology used at hundreds of sites.
- At Søllerød, proximity of downgradient municipal supply well prompted need for destructive treatment (ISCO) as well as ISS.
- Published laboratory studies show promise for ISCO + ISS.

Contents lists available at ScienceDirect

Journal of Environmental Chemical Engineering

journal homepage: www.elsevier.com/locate/jece

In situ solidification and *in situ* chemical oxidation combined in a single application to reduce contaminant mass and leachability in soil

Vipul J. Srivastava^a, Jeffrey Michael Hudson^b, Daniel P. Cassidy^{b,*}

^a CH2M HILL, 125 S. Wacker, Suite 3000, Chicago, IL 60606, USA
^b Department of Geosciences, Western Michigan University, Kalamazoo, MI 49006, USA

28 May 2016

ISCO / ISS Bench Test Approach

Reagents/Additives:

- ISCO using base-activated persulfate (BAP) [2, 3, 4%]
- ISS using CEM III/B (slag cement) [8 to 10%]
- CEM I 42,5 N SR5 (similar to Portland Type V marine cement)

• Performance Targets:

- Oxidation and reduction in leaching of dissolved phase coal tar constituents (i.e., BTEX, sVOCs, and phenolic compounds);
- Acceptable values of slurry density, viscosity, and pH (API RP13B-2);
- Average hydraulic conductivity (K_h) < 1x10⁻⁶ cm/s with no more than 10% of the samples > 1x10⁻⁵ cm/s
- Unconfined compressive strength (UCS) > 0.15 MPa at 28-day

Bench Test Phase 1A – ISCO Optimization

Phase 0 - Baseline Geologic Material Homogenization and Sampling

Phase 1A – ISCO Optimization

- E2+E3 (67:33) spiked with neat benzene to target a concentration of 10 mg/kg (dry weight basis)
- 350 g/L persulfate solution
- 2%, 3%, and 4% by dry weight BAP
- Amended with 10 M NaOH to target a pH of 11.5

Bench Test Phase 1B – ISS Optimization

Phase 0 - Baseline Geologic Material Homogenization and Sampling

Phase 1A – ISCO Optimization

Phase 1B – ISS Optimization

- Spike with neat benzene to target a concentration of 10 mg/kg
- ISS Mix Designs
 - 8% CEM III/B (dry weight)
 - 10% CEM III/B (dry weight)
 - 8% CEM I 42,5 N SR5 (dry weight)
 - 1:1 W:C
- UCS (ASTM D1633)
- Hydraulic Conductivity (ASTM D5084)
- Leach Testing (USEPA LEAF 1315)

Bench Test Phase 2 – ISCO + ISS

Phase 0 - Baseline Geologic Material Homogenization and Sampling

Phase 1A – ISCO Optimization

Phase 1B – ISS Optimization

Phase 2 – ISCO + ISS

- spike with neat benzene to target a concentration of 10 mg/kg
- Optimal ISS+ISCO Combination:
 - 8% CEM III/B (dry weight)
 - 3% BAP (dry weight)
- Two-Step (Sequential ISCO ISS)
 - NaOH base activation
 - 15-day reaction time
 - Followed by ISS
- One-Step (Simultaneous ISCO + ISS)
 - Cement hydration activation
 - ISCO/ISS treatment same day
- UCS, K, Leach Testing

Bench Test Results Summary

	Unit	ISCO	ISS	ISS+ISCO - One step	ISS + ISCO- Two step	Target value
Geotechnical test						
Unconfined compressive strength (UCS)	MPa	NA	3.8	0.59	2.92	0,15 Mpa (> 24 psi)
Average hydraulic conductivity	cm/s	NA	1.9 x 10 ^{-5 *}	2.7 x 10 ⁻⁷	1.8 x 10 ⁻⁸	< 1x10 -6 cm/s w ith no more than 10% of the samples > 1x10 -5 cm/s w ith the least amount of additional reagents
Swell of geologic materials	%	NA	14-22	23-31	24-33	Not defined
Mass destruction						
Benzene	%	99	NA	100	100	
Phenol		100	NA	83	83	Not defined
TPH		26	NA	39	37	
Naphthalene		-19	NA	58	77	
Leach reduction						
Benzene		NA	>99	>99	>99	
Phenol	%	NA	>99	>99	>98	>75
TPH		NA	NA	NA	NA	
Naphthalene		NA	93	80-98	80-84	

Target Treatment Zones – Cross Section Residual Tar in All Zones (~ 3 tonnes)

Transition From Bench to Pilot Scale

Pilot Test Challenges

- First-time use in Denmark (learning)
- Process scale up from bench to field
- Residential neighborhood, spatial constraints above ground, proximity to houses
- Challenging Geology: 3m to 5m peat stability concerns, highly plastic clay, confined aquifer, tight site logistics
- Verification of treatment performance
- Handling and mixing of potentially corrosive materials

Conceptual Full-Scale Layout of ISS Columns

Model II :

6.740 FT (ø2.00m) Column Udboret areal: 200.5m2

188m2

Areal :

Uboret areal (TQ = 3,0m2)

10 DEPTH OF ISS/ISCO (mbs)

Design		
Slag Cement (CEM II/B)	8 % dw	
Persulfate	3 % dw	
Auger diameter	2 m	
Auger Mixing area	3.14 m ²	
Total target treatment area	188 m ²	
Number of columns	75	
Area of all columns	235.5 m ²	
Column overlap	35 m ²	
Overlap %	17.5	

Pilot Test ISCO / ISS Columns

- 5 test columns in target treatment area
- 1 outside treatment area

Objectives

- Test auger mixing approach
- Test persulfate and cement mixing
- Collection of QA / QC samples
- Attainment of UCS, K_h
 performance criteria

				Start			
				Treatment		Design	Treatment
			Top El.	Depth (m	Bottom El.	Depth	Thickness
Column ID	Area	Mix Design	(m El.)	El.)	(m El.)	(mbs)	(m)
Friday 2		1	22.8	19.8	14.8	8	5
Friday 3		1	22.8	19.8	14.8	8	5
D6	E2+E3, Shallow Bench	1	22.3	19.3	9.3	13	10
D7	E2+E3, Shallow Bench	1	22.3	19.3	9.3	13	10
G8	E2+E3, Deep Bench	1	22.3	17.3	7.3	15	10
G9	E2+E3, Deep Bench	1	22.3	17.3	9.3	13	8
Potential Ad	ditional Columns						
G7	E2+E3, Deep Bench	TBD	22.4	17.4	7.4	15	10
E 7	E2+E3, Shallow Bench	TBD	22.3	19.3	10.3	12	9
E8	E2+E3, Shallow Bench	TBD	22.3	19.3	10.3	12	9

2-m Diameter Mixing Auger, Column Casing

- Geology/Stability Solution:
 - Excavated peat in 2m DIA steel casing to 3 to 5 mbs
 - ISS through each casing
 - 3 mixing passes established optimum blade rotation number to mix plastic clay
 - Cleaned augers after first mixing pass to remove accumulated clay

OPTIMIZE		M	lin/m		
lixing total meter /	volume		5	16.0 15.708	
Cyklus nr.	Penetrering i meter/min	Samlet minutte	Rotation omdr/min	Bemærkning	BRN
1-DOWN	0.2	25	10	+ Tilsæt cementslorry	50
1-UP	0.3	17	32	Kun mixing	107
2-DOWN	0.5	10	32	+ Tilsæt 50% klozur	64
2-UP	0.5	10	32	+ Tilsæt 50% klozur	64
3-DOWN	0.5	10	32	Kun mixing	64
3-UP	0.6	8	32	Kun mixing	53
	Mizing	Time: 80		Total E	BRN: 402

Tools Supporting Quality Control Assessment

"Trap Door" Sampler for Wet Grab Samples

Pocket Penetrometer for Field measurement of UCS

Construction Quality Assurance Sample Processing

- Verification of homogenous mixing
- Field measurement parameters: moisture content, pH, temperature
- Field Observations: unmixed clods, color/ consistency, free phase NAPL
- Screening and molding CQA samples
- Curing samples

Pilot Test Findings & Lessons for Full-Scale

- •K_h. All QA/QC samples met criterion of $\leq 1 \times 10^{-6}$ cm/sec.
- •UCS. 8 of 13 samples exceeded 0.35 MPa and 10 of 13 samples exceeded minimum criteria of 0.15 Mpa. (3 samples failed initially but cured later in time)
- •UCS improved by optimizing blade rotation / mixing energy, sealing leaks, reducing slurry water content
- Contaminant destruction reduction in benzene concentrations ranged from 6x to 133x.

Full-scale Implementation

Full-Scale Design By the Numbers

- Treatment Area 188 m²
- 75 columns, 17% overlap
- Rate 100 m³/day (10 m³/hr)
- Cement 15 tons/day
- Water 32 m³/day
- Persulfate 6.5 tons / day
- Mixing cycles 3 cycles; 300 m³/day

Some Lessons Learned

- 2.0 diameter auger successful with 100 ton rig
- Best day 36 m³/hr (113 m³)
- Many days 0 m³
- Corrosivity of persulfate stock solution requires special handling
- High water content of clay matrix slowed rate of cement curing, but
- UCS achieved in field was faster than in lab QA/QC samples (field temp in August > lab)

Søllerød Post-Remediation

Questions

Further Information 1(866) 251-1747 or (519) 515-0839

Sandra Dworatzek: sdwortazek@siremlab.com

SiREM | RemTech 2019