

engineers | scientists | innovators

Perspectives on Emerging Contaminants: Technology Advances and Field Applications in Remediation of Emerging Contaminants

Trevor Carlson (tearlson Ogeosyndec.com), Leah MacKinnon, Andrzej Przepiora, Evan Cox and Matt Vanderkooy

Geosyntec Consultants International

RemTech 2019

Presenting Today

Trevor Carlson, B.Sc. Principal – Remediation Specialist tcarlson@Geosyntec.com

Assessment / Remediation / Regulatory

Geosyntec Consultants | RemTech 2019

Emerging Contaminants Then and Now...

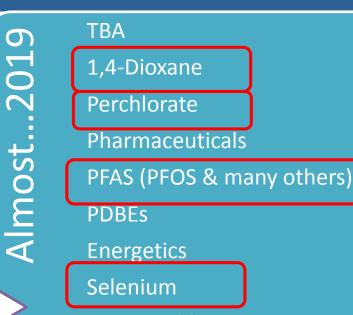
2003

MTBE and Oxygenates

1,4-Dioxane

Perchlorate

NDMA


Pharmaceuticals

PFOS

APEOs

Emerging Pathogens

Sedlak and Alverez-Cohen, Overview of Emerging Contaminants, Env. Eng. Science, 2003

1,2,3-Trichloropropane

Sulfolane

Microplastics

Pathogens, new Pesticides...

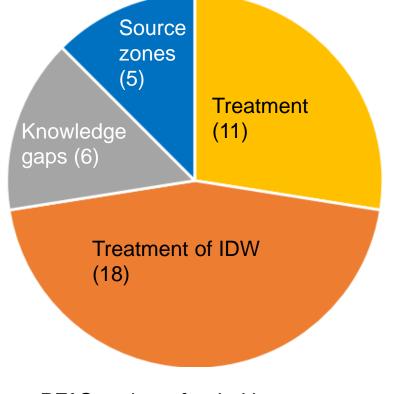
Geosyntec[▷]

Groundwater Remediation Options

Geosyntec[>]

- EstablishedGAC/Resins/RO/IX
- Compound specific
- Sensitive to water quality
- Scale-specific
- Under Development • STAR-X (for IDW)
- Physical (ball milling)
- Chemical Oxidation
- Chemical Reduction
- Electrochemical

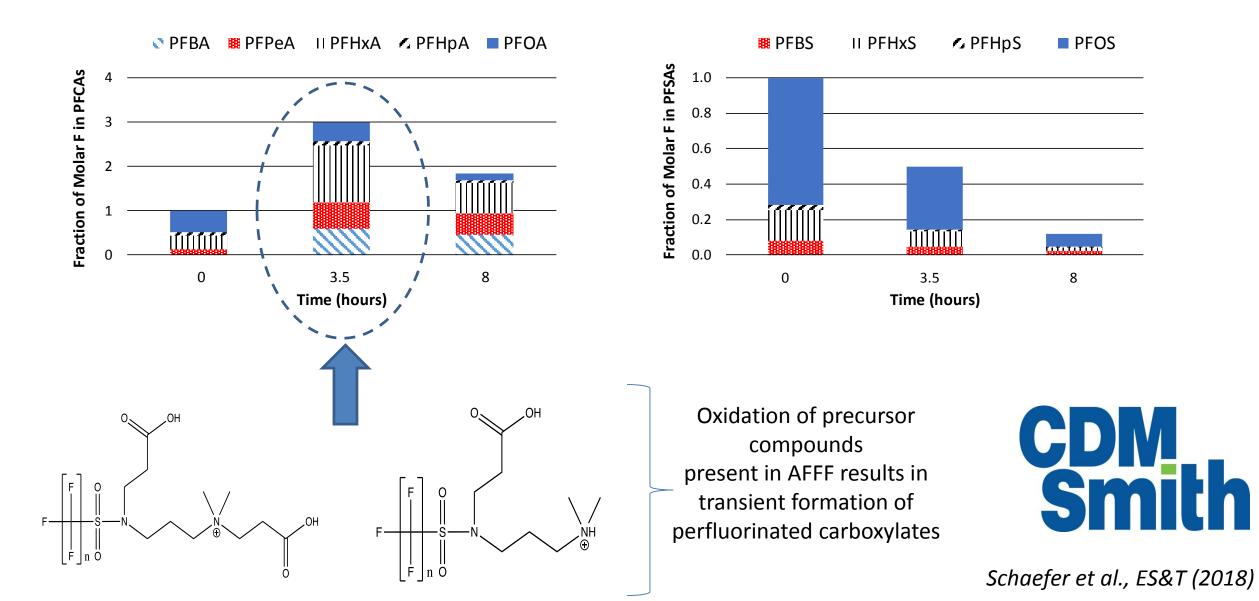
In Situ Options



- Under Development
- Treatment trains with Oxidation/low pH
- Sorption / Sequestration for PRBs or other configurations
 - GAC/Resins, Polymers
- Many other maybes, but no success stories yet

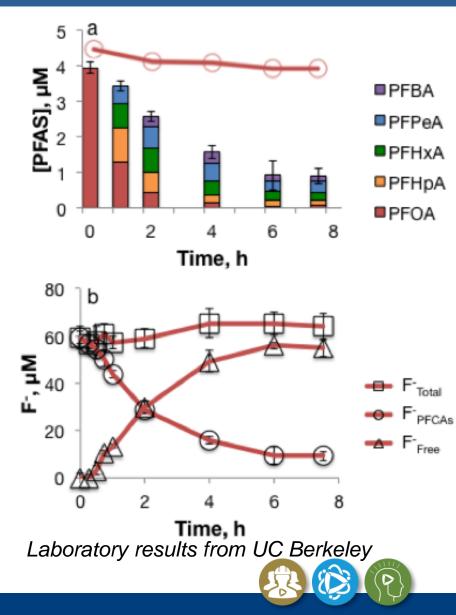
Remedial Trends

- Ex situ treatment processes most common
 - GAC, IX site-specific
- Some R&D progress with innovative ex situ and in situ tools
 - US DOD/DOE R&D treatment growing focus
 - IDW treatment also key focus


PFAS projects funded by SERDP/ESTCP in FY2018

https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater-SONs/In-Situ-and-Ex-Situ-Remediation

Geosyntec^D

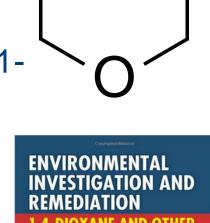

Electrochemical Oxidation of AFFF-Impacted Groundwater using Boron-Doped Diamond Anodes

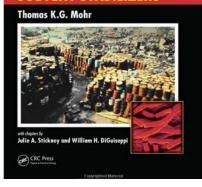
R&D – In Situ Treatment Train

Thermally Enhanced Low-pH ISCO / P&T treatment train

- Fully degrades PFOA and other PFCAs
- Fully degrades polyfluorinated precursors
- Not expected to degrade PFOS and other PFSAs
- 1 month treatability study removed 90% PFCAs and precursors
- Field pilot at NAS Jacksonville
- ESTCP Funded Project, team includes
 - Dr. David Sedlak, University of California at Berkeley
 - Dr. John Kornuc, NAVFAC EXWC
 - Dr. Rula A. Deeb, Bruce Marvin, Elisabeth Hawley, Geosyntec Consultants

<u>Geosyntec</u>


1,4-Dioxane


1,4-Dioxane Background Information

- Emerging contaminant that keeps on emerging (avg. DW detection rate = 13%)
- Animal carcinogen and suspected human carcinogen
- Solvent, wetting agent & stabilizer for chlorinated solvents (1,1,1-TCA)
- High Solubility \rightarrow Large Plumes
- Poor removal by GAC, air stripping
 - Log K_{OW} = -0.32*
 - Henry's LC = $2.2 \times 10^{-5} \text{ atm-m}^3/\text{mol}^*$
- Proposed Health Canada Guidelines published Sept 2018 with MAC of 50 µg/L, no CCME standard

https://www.canada.ca/en/health-canada/programs/consultation-1-4-dioxane-drinking-water/document.html#a715

Geosyntec[>]

Groundwater Remediation Options

Geosyntec^D consultants

Bioreactors

• Effective

- Applicable to wide range of concentrations
- Cultures under development
- Advanced Oxidation
- Effective in laboratory studies
- Field applications
- Sorbent/Resins
- Specialized vendor products
- GAC not effective

Bioremediation

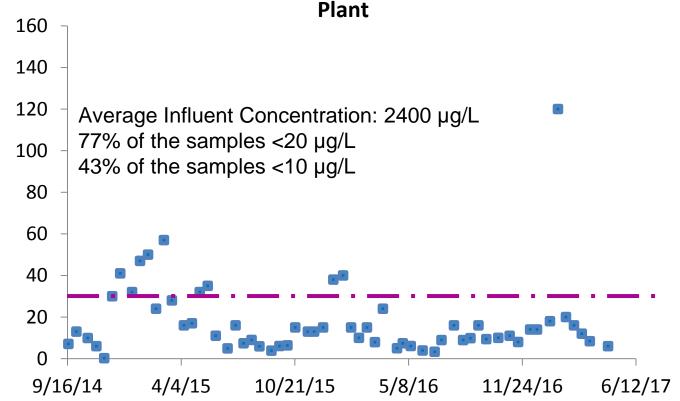
- Cultures under development
- Chemical oxidation (ISCO)

Phytoremediation

Thermal

In Situ Options

- Electrokinetics
- Large, dilute plumes unique challenges for remediation



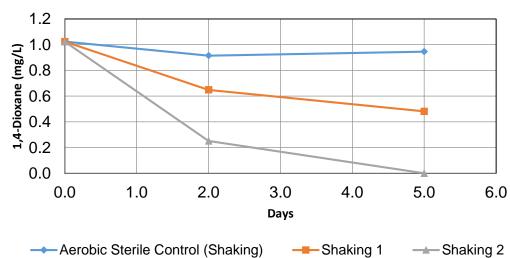
Ex Situ Options

Geosyntec led R&D: Bioreactor Field Application at Landfill Site

Effluent 1,4-Dioxane Concentrations at Leachate Treatment

Effluent Concentration (μg/L)

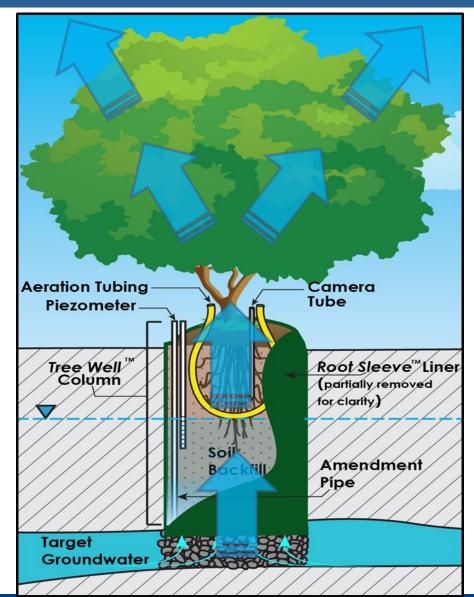
Bioaugmentation culture for in situ aerobic bioremediation also under development at SiREM



Geosyntec[▷]

1,4-Dioxane Culture Development

- Mixed culture
- Aerobic degradation
- Degrades up to 1,000 mg/L to <20 ug/L
- Requires DO for


effective treatment

Treatability Study

Geosyntec[>]

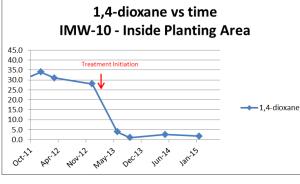
Engineered Phytoremediation - TreeWells®

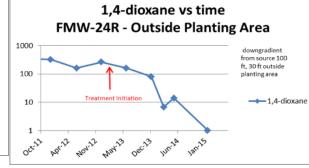
- Developed and patented by Dr. Edward (Edd) Gatliff of Applied Natural Sciences, Inc. (ANS), licenced to Geosyntec
- Targets <u>specific</u> groundwater by directing root growth downward
- Effectively treats a wide range of contaminants
- Overcomes challenges to conventional phytoremediation
- Pre-treatment option (reactive treatment media ZVI, etc.)
- Optimizes growing conditions
- Highly adaptable can be tailored to specific site conditions
- <u>Active</u> treatment in a <u>passive</u> manner

It is a designed, engineered approach to using plants to address contaminant issues. Not just "Plant a tree and hope for the best."

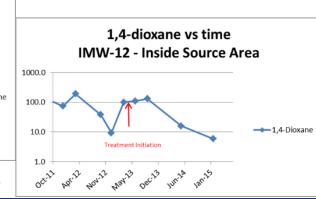
Geosyntec^o

Case Study – Sarasota, Florida




- Comparison of GW flow at time of *TreeWell* system installation (Yellow) vs. 18 months post-installation (Blue)
- Gradient reversal in only two growing seasons
- Experience at Sarasota with predicted groundwater response versus actual has been applied to modeling of other sites with similar success

.


Dissolved-phase concentrations have decreased significantly and rapidly since implementation

154 *TreeWell* units planted in 2013

All indicated concentrations in µg/L

Perchlorate

Perchlorate Uses

Geosyntec[>] consultants

Military and Space Applications (rockets, boosters, flares) Explosives Safety (road) flares Matches Medical Devices Leather Tanning Agent **Electronic Tubes** Photography

Pyrotechnics (fireworks) Airbag Inflators (igniter) Lithium Perchlorate Batteries Electropolishing/Metal Etching Mordant for Dyes & Fabrics Lab Dessicant/Digesting Agent

Fertilizers (Chilean Nitrate) Evaporite Deposits (natural) Lightning (natural)

Common Release Mechanisms

Manufacturing Site Activities

- Production processes mixing, grinding, building wash-down
- Propellant hogout/bore-out
- Waste handling and disposal (open burn, landfill)

Training Range Activities

- Firing Points
- Impact Areas

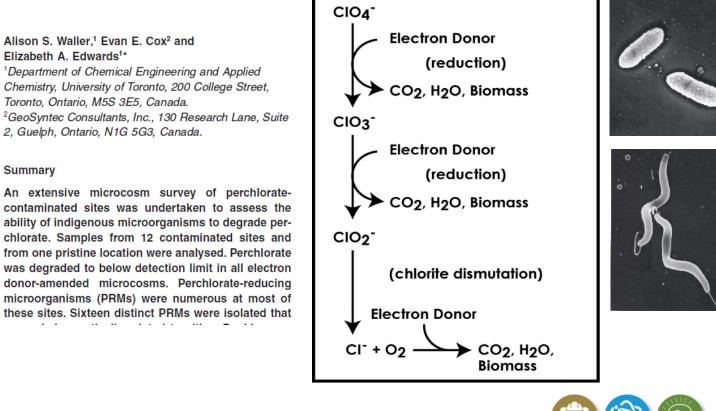
Storage & Disposal Areas

Geosyntec[▷]

Perchlorate Characteristics

Highly soluble

Environmental Microbiology (2004) 6(5), 517-527


doi:10.1111/j.1462-2920.2004.00598

Geosyntec^D

consultants

- No sorption to soil
- Limited natural degradation
- Disperses in surface drainages
- Infiltrates to groundwater
- Migrates long distances (many kilometers) in groundwater
- Biodegrades with organics present

Perchlorate-reducing microorganisms isolated from contaminated sites

Groundwater Remediation Options

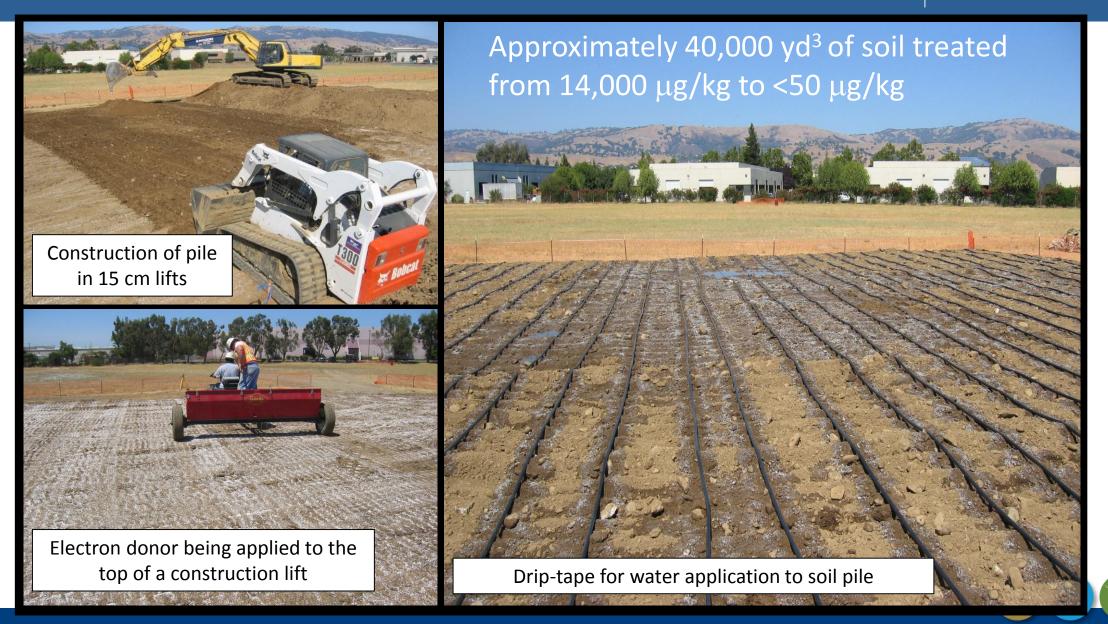
Situ

- Tailored GAC
 - <50 μg/L
- Ion Exchange
 - <500 μg/L

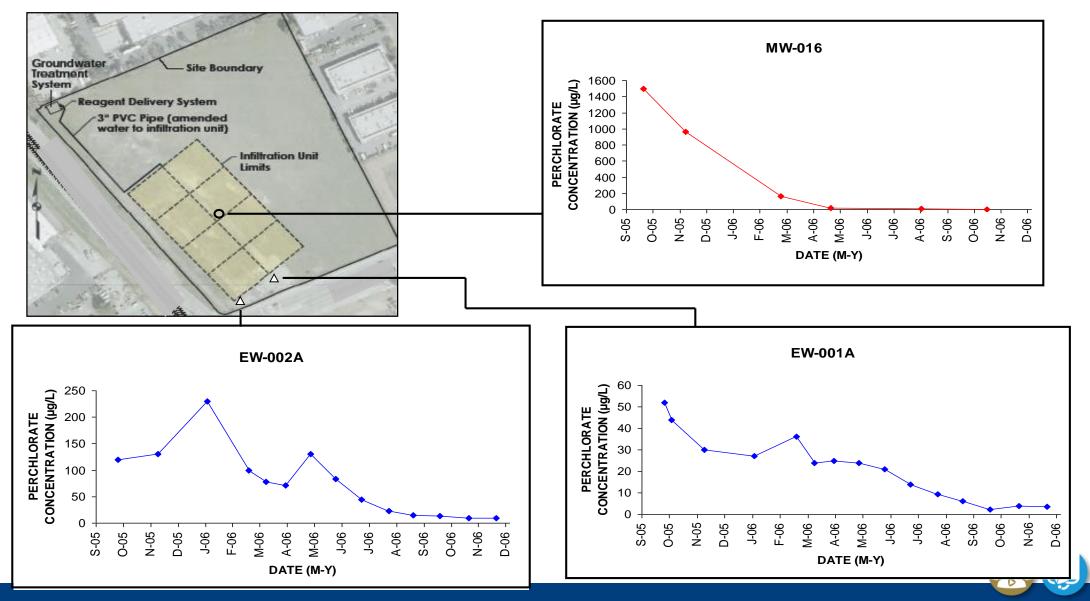
Ex Situ

- Bioreactors (FBR, FFR)
 - >500 μg/L <100,000 μg/L
- Reverse Osmosis/EDR
- >100,000 µg/L

Bioremediation


- <1,000 mg/L
- Phytoremediation
 - <10 mg/L

• Electrokinetics


- <100 mg/L
- Coupled with either bioremediation or extraction

Innovative Soil Bioremediation

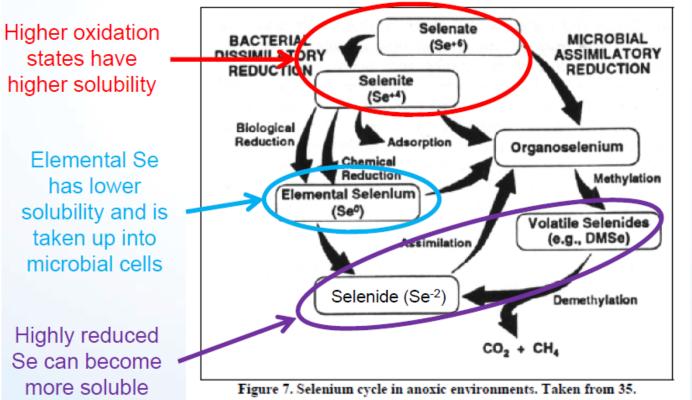
Geosyntec[>]

Improvement of Groundwater Quality Following Soil Remediation

Geosyntec[▷]

Selenium

Selenium Releases to the Environment


- Naturally occurring non-metal in rock, including organic rich shale and coal areas
- Typically in insoluble reduced form, released when oxidized by exposure to air
- Present in process and surface water runoff from:
 - Coal and other mining sites (phosphate, gold)
 - Power industry coal combustion flue gas desulfurization (FGD) water
 - Oil refineries
 - Land redevelopment of former wetland/anoxic areas where rock types contain Se
- Ecological toxicity Se can cause embryo mortality in birds and larval deformities in fish

Geosyntec[>]

Selenium Characteristics/Behaviour

- Typically released as soluble selenate or selenite
- Elemental selenium is less soluble and can be precipitated under reducing redox conditions
- Biological reduction is an effective removal mechanism

$$\underbrace{\begin{array}{c} \operatorname{SeO}_{4}^{2-} & \operatorname{SeO}_{3}^{2-} & \operatorname{Se} \\ \operatorname{Se}(\mathsf{VI}) & \operatorname{Se}(\mathsf{IV}) & \operatorname{Se}(\mathsf{0}) \end{array}}_{\operatorname{Se}(\mathsf{0})}$$

Geosyntec[>]

Groundwater Remediation Options

Geosyntec[>]

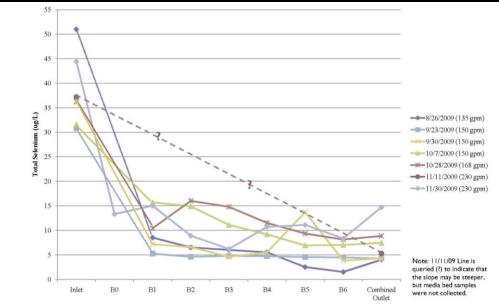
- ZVI Canister
- <50 μ g/L, low flow
- Ion Exchange
 - <100 μ g/L, low flow
- Bioreactors (FBR, FFR)
- <500 μg/L

• ZVI PRB

- <100 μ g/L, low flow
- Engineered Wetland
 - <500 μg/L, low flow
- Bioremediation
 - <1,000 μg/L (high flow)
- TreeWells?

Situ

 Possibly coupled with either bioremediation or ZVI (low flow)


Ex Situ

Technology Innovation – Gravel Bed Bioreactors

geogrids and matrix tank modules (above).

Sulfolane

Sulfolane Uses & Characteristics

• Uses

- Initial use: Purifying butadiene
- Sweetening of "acidic" or "sour" natural gas (Shell Sulfinol[®] Process) – Removes CO₂, H₂S, mercaptans
- Extraction of aromatics (BTEX) from refinery stream
- Production of insecticides, herbicides, fungicides
- Process solvent in pharmaceutical manufacturing
- Interesting Characteristics
 - Density driven properties, can act as a DNAPL
 - Fairly soluble, limited sorption
 - Can migrate long distances (many kilometers) in groundwater

Geosyntec[>]

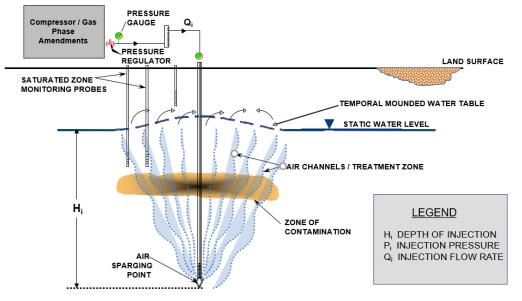
Soil/Groundwater Treatment Options

Geosyntec[>]

Aerobic Bioremediation Options

Bioreactors

- Microbial film on either fixed or fluidized media
- Generally used for < 10 mg/L sulfolane
- Footprints vary, capital cost can be high
- O&M costs tend to be high


- Aerated Lagoons

- Microbial culture established in water/floc
- Treats >>> mg/L sulfolane
- Very large footprint
- In Situ Biosparging

-

- Sparge air or oxygen into subsurface to promote oxidation
- Typically <10 mg/L sulfolane

*Graphic courtesy: Princeton Groundwater Remediation Course

Thank you for listening!

Trank And with a line of the second

Trevor Carlson Phone: 306.808.0449 tcarlson@Geosyntec.com