

Degradation Pathway

Microbes & Enzymes

Reactants + Reactants

Products + Products

The degradation equation/pathway is the remediation roadmap

OF MICHIGAN

Degradation Pathway

Microbes & Enzymes

Reactants + Reactants

Products + Products

The degradation equation/pathway is the remediation roadmap

Performance monitoring plans can include **key reactants and products**; anything needed to facilitate the reaction

Degradation Pathway

Microbes & Enzymes

Reactants + Reactants

Products + Products

The degradation equation/pathway is the remediation roadmap

Performance monitoring plans can include **key reactants and products**; anything needed to facilitate the reaction

Observing expected trends is evidence of a activity along the targeted degradation pathway and realizing design goals

Risk Mitigation Using Actionable Data

Risk Mitigation Using Actionable Data Initiate Plan & Design Monitor & Execute Control Close

Case Study

Site: in Quebec Provence

ENVIRONMENTAL FIELD BOOK

Nº 550F

Passive Treatment Barrier

Combined Remedy:
Sorption
Biotic Reduction
Abiotic Reduction

Reward! for return: 1600, boul. René-Lévesque O., 16° étage Montréal (Québec) H3H 1P9 CANADA

Background

Railyard Site

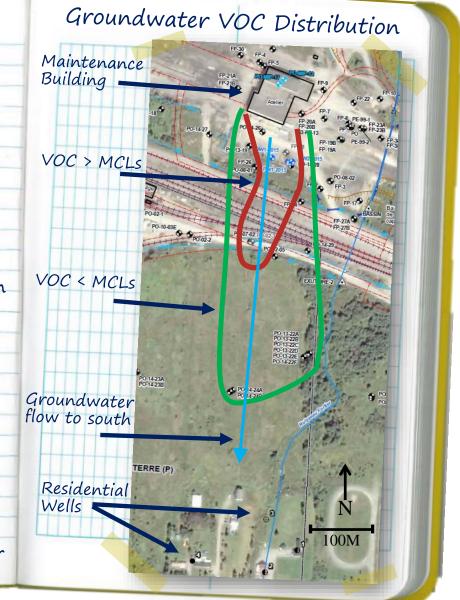
- Typical rail yard activities
 Chlorinated solvents used as cleaner/degreaser in 70's & 80's

Onsite Contaminants

- Petroleum
- TCE & 1,1,1-TCA and reductive daughter products

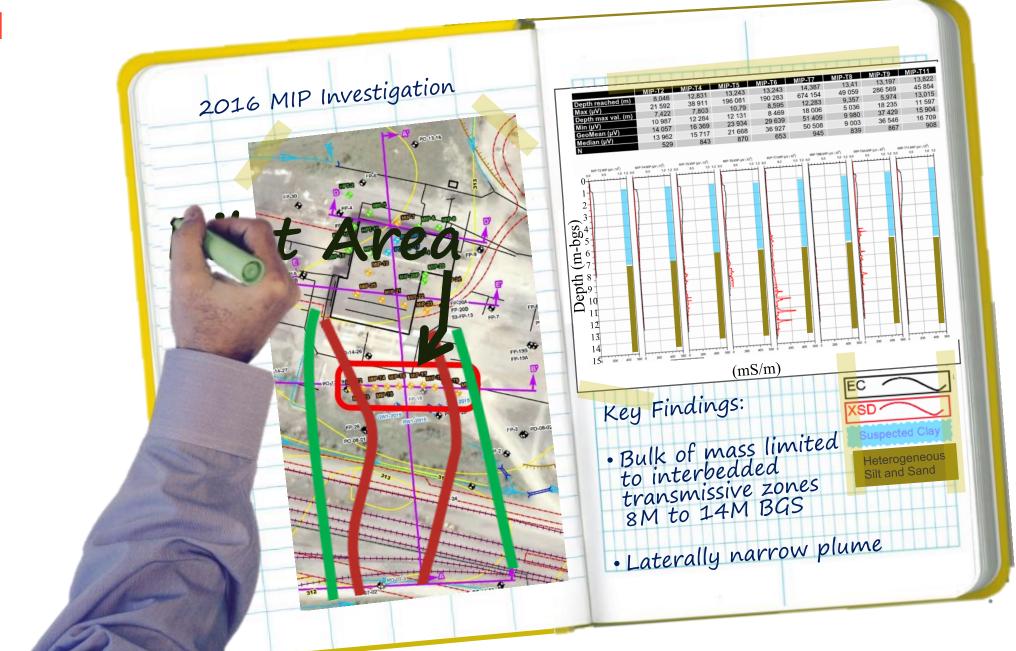
 – Present in soil and shallow
- groundwater
- Chlorinated solvents also present in deeper overburden groundwater

Offsite Contaminants

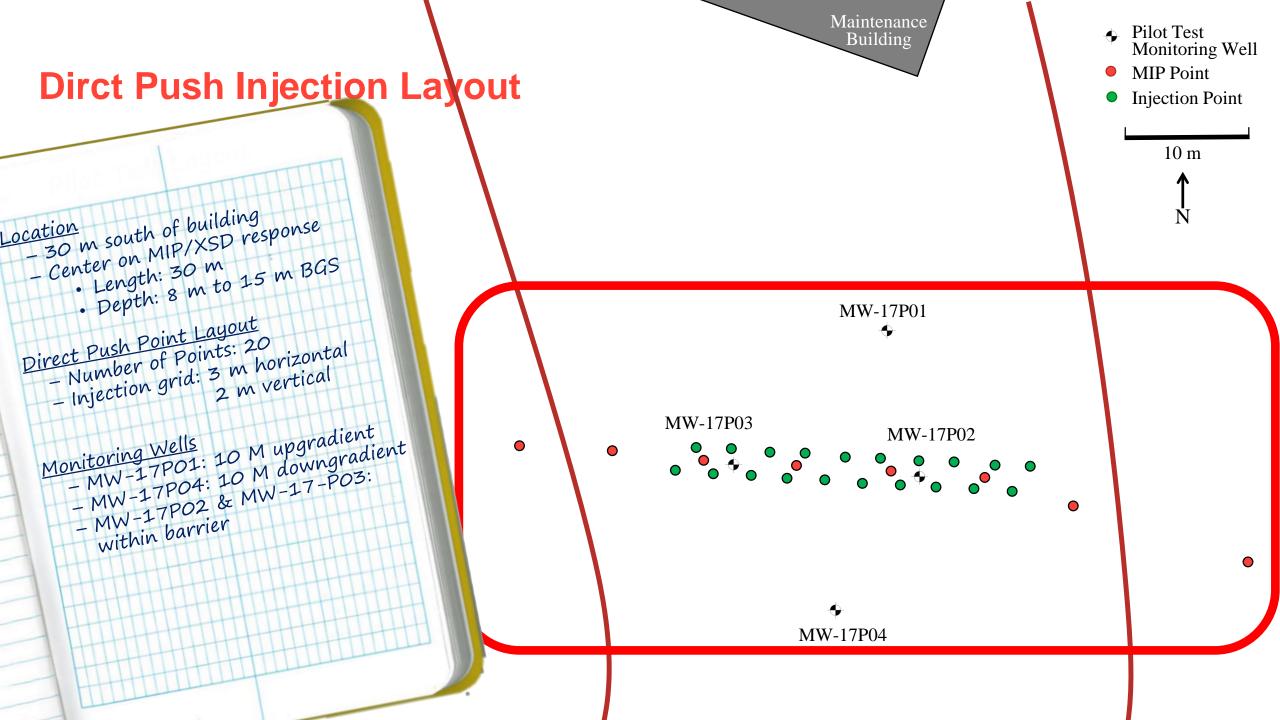

- Chlorinated solvents and reductive daughter products in deeper overburden groundwater

Primary Goal

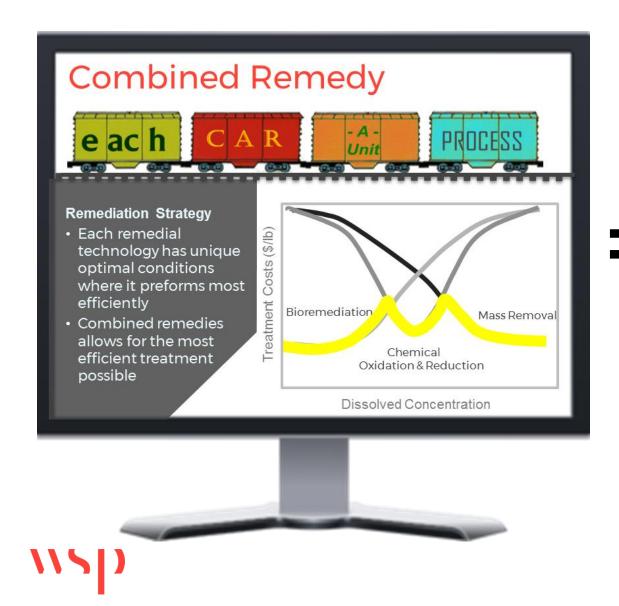
- Protect residential wells


MNA - Occuring

- Not just sequential reduction as DCE fractionated without daughter accumulation (no VCI)



Background



Amendment Selection

- Activated Carbon (PlumeStop®)
- Fermentable Electron Donor
- Microbial Augment
 - S-MicroZVI (sterically stabilized ZVI)

Amendment Selection

Site Specific Degradation

Natural Attenuation:

- · Appears to be some natural attenuation based on VOC distribution
- Isotopic data indicates degradation but minimal accumulation of VCI or ethene or ethane (not hydrogenolysis)
- · Mineralogical evaluation identified naturally occurring ferrous iron minerals (abiotic elimination pathways)

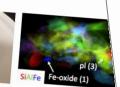
Stimulated Degradation:

• In Situ Microcosms demonstrated the ability to stimulate hydrogenolysis pathway

Infrastructure

Transmitted by Email

To: Messrs. Luc Turbide and Matthew Burns, WSP From: Jim Studer, InfraSUR


Date: December 30, 2015

Subject: Baseline Elemental-Mineralogical-Morphological-Microbial (EM3) E

Table 3, Weakly Bound Ferrous-Ferric-Total Iron (InfraSUR Method WBI-2015-B) Ferrous (mg/kg) Ferric (mg/kg)

OW1-2015	Iron, mg/kg	Ferro-Magnetic Particles Y/N	Total iro	Identified Many 1 W1 (2015).					
PW1-2015	2,307 V	¥	4,850	Asial Fedapar (within) Asial Fedapar (within) Amphibias (ferro-activative) Anaphibias (ferro-activative) Arias Fedapar (microcline), Quartz Alkasi Fedapar (microcline), Quartz Alkasi Fedapar (microcline), Asia	SEM-EDS (focus on fine fraction) Alsai Fedispar (see below) (abbs, K-cci, plagociase, olgociase) Quartz, Amphòde (actinoliae). Chiorte Mica (muscovite)	TEM-EDS (focus on fine fraction			
				Akali Feldipar (nicrodine), Quatz	(abite, K-rich, plagioclase, oligoclase) Quartz, Amphibole (actinolite, homblende) Chlorite, Epidole	Not Performed			

LLC • 8100 M-4 Wyoming Blvd. NE, No. 410 • Albuquerque, New Mexico 87113

Table 1. Summary of the results obtained for in Situ Microcosm Units deployed in PO14-26 and PO14-28.

ble 1. Summary of the results obtained for I	n Situ Microcosiii Olim	PO14-26	BioAug
ble 1. Summary of the results of	PO14-26	BioStim	
Sample Information	MNA		1.04E+07
Sample Illionia Treatment		1.18E+03	5.10E+05
Treatment	6,62E+02	<2.50E+01	<2.50E+01
ticrobial Populations (cells/bead)	2.11E+01 (J)	5.57E+02	9,99E+05
nehalococcoides sp. (DHC)	1.18E+02	<2.50E+01	4.41E+05
tceA Reductase (TCE)	<2.50E+01	4.05E+01 (J)	5.60E+05
bycA Reductase (BVC)	4,98E+01 (J)	2.23E+06	3.80E+05
vcrA Reductase (VCR)	1.55E+05	8,47E+05	1.65E+05
vcrA Reductase (VCT) Dehalogenimonas spp. (DHG)	1.53E+05	1.16E+03	1.55E+08
Dehalogenimonus sper	1.532+03	1.16E+07	1,555,000
Geobacter spp. (GEO) Sulfate Reducing Bacteria (APS)	1.31E+02 (J)	3.566+07	
	3.13E+07		<10
		<10	<10
	<10	<10	180
teminant of Concern (µg/c)	<10	<10	1170
Tetrachloroethene	<10	16.6	81
1 largethene	4.4	<10	548
	<10	11.7	
1,1-Dichloroethere cis-1,2-Dichloroethene	3.1		
cis-1,2-Diction of the	3.2		10
Vinyl chloride 1,1-Dichloroethane		0.71	2.6
1,1-Dichiol de die	0.52	0.36	<0.50
Dissolved Gases (µg/L)	<0.10	<0.50	
Ethene	<0.50		<0.50
Ethane		<0.50	<1.0
Acetylene	<0.50	36	6.89
	20.50 110	7.26	0.09
Geochemistry		7.20	
Ferrous Iron (mg/L)	7.71		NA
Sulfate (mg/L)		NA	-18.11
pH	NA	-17.08	-28.57
CSIA (%)	-17.05	NA	-31.68
	NA	NA	-27.92
1 2 Dichlordetter	NA	-28.36	
	-27.93		
1,1-Dichloroethene		NA = Not Analyzed	
1,1-Dichloroethane	Pasult not detected	MARIA	
1,1-Diction 5 and	w PQL but above LQL < = Resolution		
La estimated concentration below	w PQL but above LQL <= Result not detected		
Legeno.			

Knoxville, TN 37932 Phone: 865.573.8188

Pre-Injection ISM Deployment

collect and dry saturated soils

place soil into screened housings

deploy before amendment application

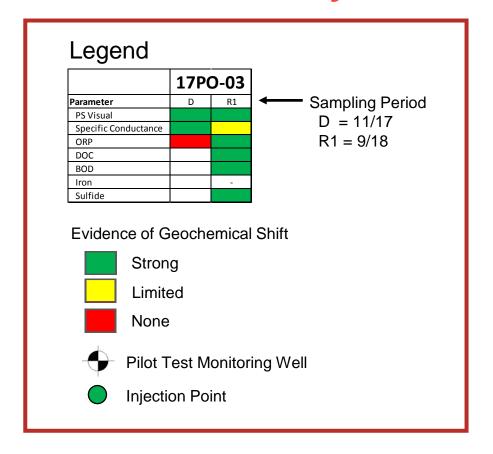
- HRC: - Augment:

Dilution/Chase Water - Potable Water: 25,000L

- Wast + Amendment: 28,000 Total Fluids:

- Aproximately 10% of mobile porosity within treatment zone

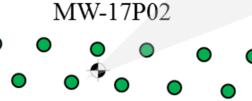
- Pressure: 20 to 40 psi Observations


- Some back pressure - Amendment observed and

some geochemical shifts in wells within treatment area

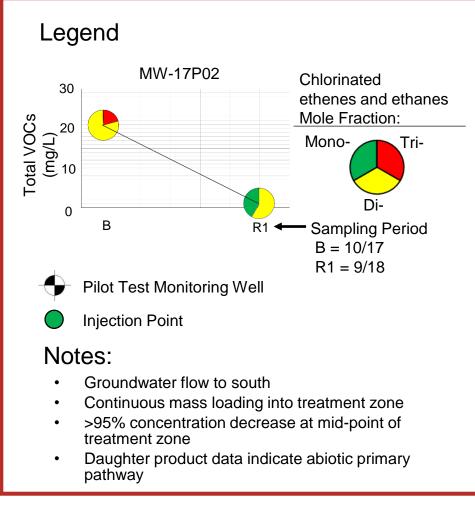
Results - Delivery

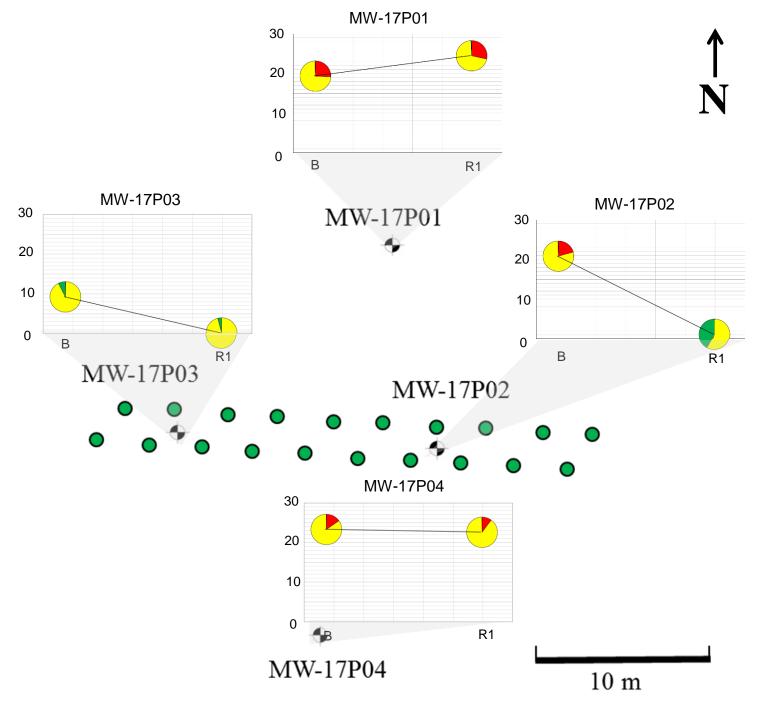
	17PO-01				
Parameter	D	R1			
PS Visual					
Specific Conductance					
ORP					
DOC					
BOD					
Iron					
Sulfide					


	17PO-03			
Parameter	D	R1		
PS Visual				
Specific Conductance				
ORP				
DOC				
BOD				
Iron		-		
Sulfide				

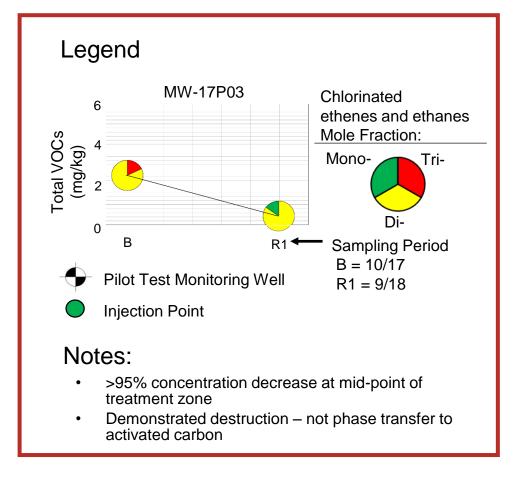
MW-17P01

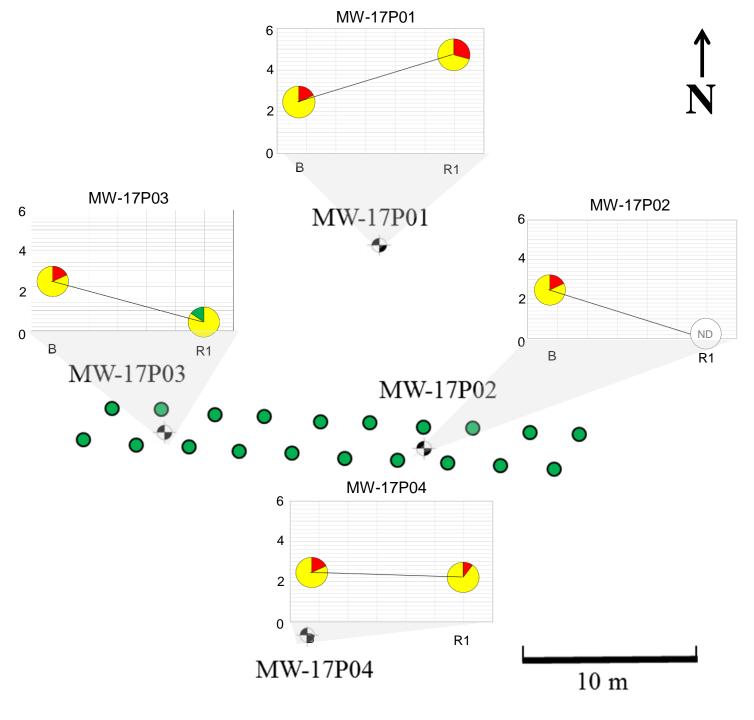
	17PO-02			
Parameter	D	R1		
PS Visual				
Specific Conductance				
ORP				
DOC				
BOD				
Iron				
Sulfide				

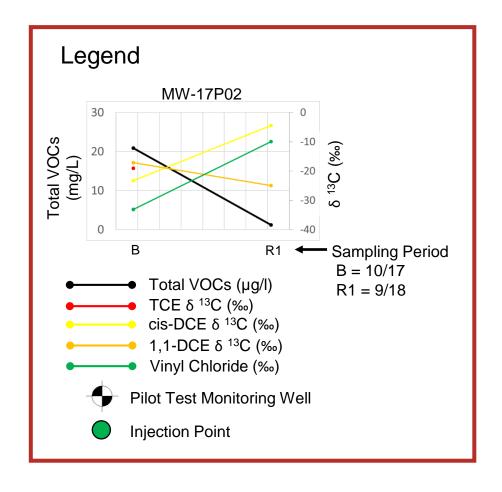

	17PO-04			
Parameter	D	R1		
PS Visual				
Specific Conductance				
ORP				
DOC				
BOD				
Iron				
Sulfide				

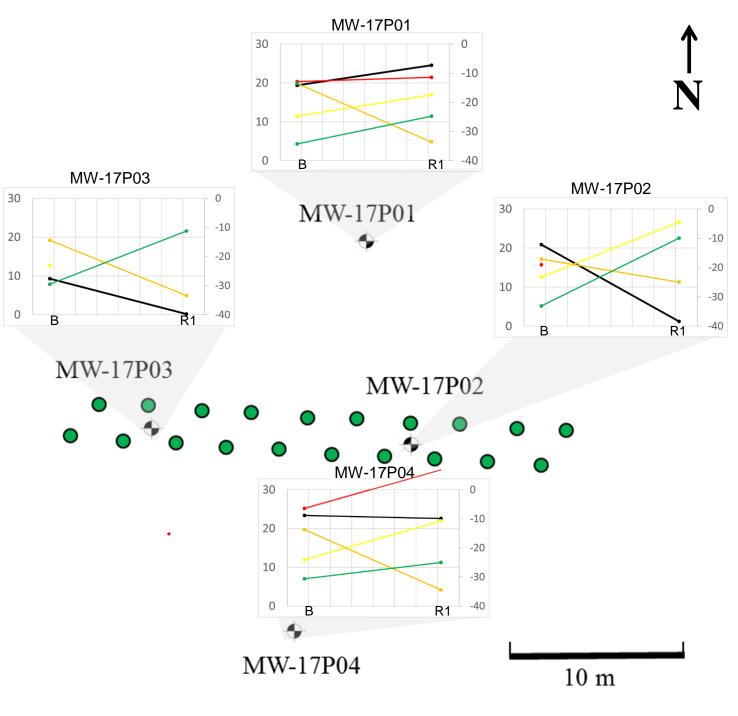

MW-17P04

10 m

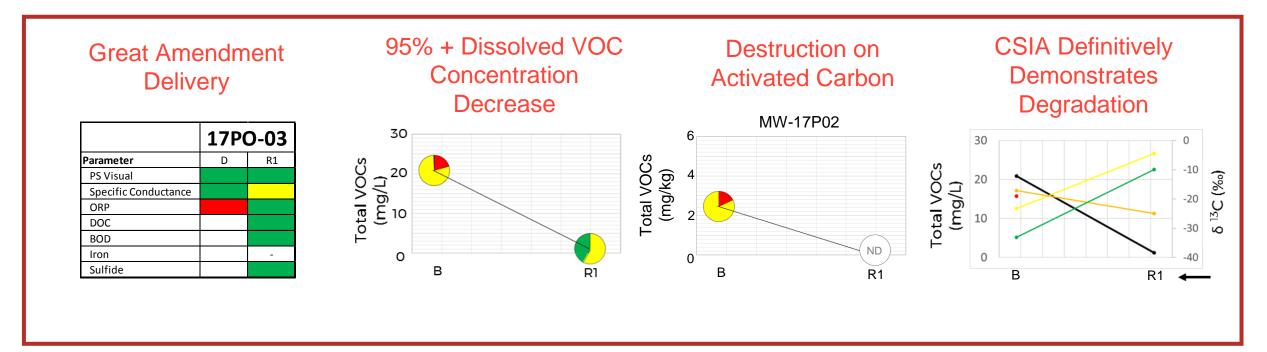

Results - Groundwater




Results - Soil ISMs

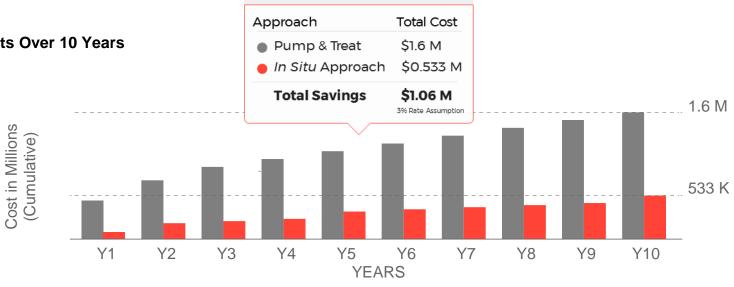


Results - CSIA



Conclusions

Successful Technology Implementation



Background

We've performed similar applications similar applications with similar results with similar results at many sites at many fractured including fractured bedrock

Annual Recurring Costs Over 10 Years

Cumulative Cost Comparison

Cost Comparison (USD)

Remediation Approach	Year1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10
Pump & Treat										
Investigation, Design, & Installation	540,000	290,000	190,000	0	0	0	0	0	0	0
O&M	0	0	0	110,000	110,000	110,000	110,000	110,000	110,000	110,000
Total Annual Cost	540,000	290,000	190,000	110,000	110,000	110,000	110,000	110,000	110,000	110,000
Net Present Value	1,598,679									
In Situ										
Investigation, Design & Installation	65,000	100,000	0	0	0	0	0	0	0	0
O&M/	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000	30,000
Reapplication	0	0	0	0	75,000	0	0	0		75,000
Total Annual Cost	95,000	130,000	30,000	30,000	105,000	30,000	30,000	30,000	30,000	105,000
Net Present Value	533,775									

MBTs Critical to Informing Design & Performance

MBT Costs	Cost			
<u>Pre-Design</u>				
CSIA	\$3,600			
PCR (including Biotrap ISMs)	\$10,000			
Core Studies	\$7,000			
Performance Monitoring				
CSIA	\$5,000			
PCR	\$2,500			
Native Material ISMs	\$500			
Total:	\$28,600			

Questions

wsp.com/usa