

Environmental Remediation Cement Solidification/Stabilization

After decades of improper waste management, an industrial location in Sydney Harbor became severely contaminated

- Throughout the 20th century, runoffs from coke ovens of the steel industry filled the estuary with a variety of coal-based contaminants and sludge, making this area a hazardous waste site
- 800,000 metric tons of
 contaminated material needed
 to be treated due to the
 presence of pollutants like
 Polychlorinated Biphenyls
 (PCBs), raw sewage and
 benzene

LafargeHolcim helped transform the Sydney Tar Ponds into a 250 acres park for public use

- In 2009, cleaning operations using Solidification/Stabilization (S/S) with cement began
- The cleanup was completed in 2013, transforming the area into a Non-hazardous stabilized site, with 250 acres remediated
- This is the largest brownfield redevelopment project in North America to date and transformed the area into the Open Hearth Park, a green space with a sports field, outdoor concert stage and a playground

Solidification / Stabilization with Cement How it Works

Depending of the type of contaminants, the material will need to be solidified and/or stabilized. This is achieved by mixing the soil with cementitious products

Solidification / Stabilization with Cement Process and Equipment

The main objective of this process is to provide a good mixing of the contaminated soil with the liquefied cement that will ensure the solidification and/or stabilization of the impacted material

Solidification / Stabilization is Considered a Viable Solution by EPA and its Advantages Include Traffic Reduction and Material Reutilization

23% of EPA Source Control Sites Used Solidification / Stabilization

LH Follows a Rigorous Sampling, Preparation and Testing Process

Sampling and Preparation

 Each *individual* sample in the blocks is a composition of randomly extracted samples from fresh test pits on site

Pre-engineering Testing

- Total organic carbon (*TOC*) of soil
- Compressive strengths 7/28 days
- Observed set time and workability
- Structural integrity test (SIT)
- Traditional synthetic precipitation
 leaching procedure (SPLP)

- *SPLP* extraction (on treated monolith)
- Proctor density curve & opt. moisture
- Gradation & in situ moisture content
- California bearing ratio (CBR)

Outgoing Material Testing

- Compressive strengths 7/28 days
- Structural integrity test (SIT)

• Traditional SPLP

Structural Integrity Test (SIT)

• U.S. EPA method 1310B

- Test method intent is to demonstrate treated soil will maintain structure in situ
- Relevant to treated soil that will be exposed only to acidified precipitation
- Core sample monolith tested using SPLP extraction
- Analytes tested are site specific
- Used successfully in compliance testing (e.g.: Sydney Tar Ponds, NS)

Impressive Reduction on Content of Hazardous Material

	BLOCK 1/14						
		SPLP SIT Sample [ug/L (ppb)]					
Metals	Total Metals [ug/kg (ppb)]	5% Contempra	7% Contempra	9% Contempra			
Antimony (Sb)	1,800	0.7	0.7	0.6			
Arsenic (As)	4,600	ND	ND	ND			
Barium (Ba)	110,000	37	460	27			
Beryllium (Be)	380	ND	ND	ND			
Boron Hot Water Extraction	560						
Boron (B)	7,800	22	120	23			
Cadmium (Cd)	260	ND	ND	ND			
Chromium (Cr)	19,000	33	31	41			
Cobalt (Co)	7,400	ND	2.0	1.3			
Copper (Cu)	44,000	36	41	25			
Lead (Pb)	110,000	ND	1.2	ND			
Mercury (Hg)	140	ND	1.3	ND			
Molybdenum (Mo)	780	10	7	6			
Nickel (Ni)	20,000	17	22	13			
Selenium (Se)	ND	ND	ND	ND			
Silver (Ag)	ND	ND	ND	ND			
Thallium (TI)	130	ND	ND	ND			
Vanadium (V)	26,000	14	10	5			
Zinc (Zn)	110,000	ND	20	ND			

*note: moisture content in 23% - 34% range

Foundry Sand Before / After Adding CKD

CASTING SAND	Lagoon 1	Lagoon 2	Lagoon 1 - 10%	Lagoon 1 - 15%	Lagoon 2 - 10%	Lagoon 2 - 15%
Parameter (PPM)	1170076	1170077	1177257	1177258	1177260	1177262
Antimony	<1.6	<1.6	0.05	0.05	0.02	0.02
Arsenic	6.80	9.00	<0.010	<0.010	<0.010	<0.010
Barium	201.00	182.00	0.83	0.72	0.40	0.51
Beryllium	0.80	1.30	<0.010	<0.010	<0.010	<0.010
Cadmium	7.00	14.50	0.07	0.04	0.06	0.04
Chromium	51.00	85.90	<0.020	<0.020	0.04	0.02
Cobalt	5.70	6.00	0.04	0.03	0.05	0.05
Copper	117.00	154.00	0.05	0.04	<0.030	<0.030
Iron	26,700.00	38,200.00	6.62	5.28	53.20	15.70
Lead	193.00	483.00	0.03	0.01	0.57	0.18
Manganese	666.00	2,010.00	6.30	5.05	17.10	13.20
Mercury	0.39	0.85	<0.02	<0.02	<0.02	<0.02
Molybdenum	6.70	9.00	0.04	0.05	<0.020	0.03
Nickel	40.80	57.90	0.19	0.15	0.49	0.41
Selenium	0.80	1.50	0.01	0.02	<0.010	<0.010
Silver	0.90	4.00	<0.010	<0.010	<0.010	<0.010
Strontium	130.00	135.00	4.12	3.71	3.82	3.91
Thallium	<0.4	<0.4	<0.010	<0.010	<0.010	<0.010
Titanium	96.00	147.00	<0.050	< 0.050	< 0.050	<0.050
Vanadium	11.50	36.00	<0.020	0.02	<0.020	<0.020
Zinc	1,420.00	7,040.00	12.30	7.18	81.40	70.20
pH	n/a	n/a	10.90	11.90	9.84	10.50

Success Stories Sydney Tar Ponds Clean Up

Site: Tar Ponds, Sydney, NS

Date: 2007 - 2013

Challenges:

- 800,000 tons of material needing to be excavated
- Cooling pond sludge from coke ovens
- Over 3.8 tons of PCBs, raw sewage and benzene

Requirements:

- · Minimal dust, unconfined compressive strengths and permeability specs
- Future site uses: park, walking trails, sports fields, and wetlands

Project / Application:

- Contractors: GHD; Nordlys Environmental and Van Zutphen Construction / Material Supplier. Lafarge
- Remediate ~100-hectare (250 acres) surface area
- In situ treatment, stabilization and solidification of soil/sludge, filling ponds

Benefits to Customer:

- Site stabilized and hazardous chemicals immobilized
- Canada's largest S/S project, converted to parkland
- Avoided most widely used method of destroying PCBs via incineration

Success Stories *Recycle Barrel Facility*

Site: Lansing, MI

Date: March 2012

Challenges:

- 10,000 tons of material of lead-contaminated soil;
 1,900-8,000 mg/Kg total Pb
- 10-150 ug/L in TCLP extraction
- Proximity to commercial and residential properties

Requirements:

• Stabilize lead in soil to less than 5 mg/L in a TCLP extraction

Project / Application:

- Contractor: CRA (GHD) / Material Supplier: Lafarge
- · In situ treatment and removal off-site due to economical cost advantage
- Soil remediation using 1,000 tons of CKD

Benefits to Customer:

- Reduced cost due to in situ treatment before removal
- Dramatic reduction in landfill cost; non-haz vs hazardous
- Project resulted in 50% savings vs original budget of dig and haul

Success Stories Former Chemical Facility

Site: Bay City, MI Date: Summer 2013

Challenges:

- 40,000 tons of impacted soil
- Former chemical manufacturing plant)
- · Hazardous heavy metals, PAHs and other organics

Requirements:

- · Remediated site required passing environmental assessment for TCLP
- Portland Cement to solidify and immobilize organic fraction
- CKD to stabilize heavy metals (originally Portland was specified)

Project / Application:

- Contractor. Job Site Services / Material Supplier. Lafarge
- Remediate 40,000 ton of impacted soil and sludge in a series of drainage ditches
- In situ remediation and treated soil left in place

Benefits to Customer:

- No off-site landfilling
- Project resulted in 50% cost-savings vs. original budget of dig and haul

Questions?

Paul Ruehl Paul.ruehl@lafargeholcim.com; Phone: 313-506-8495

