

Making radiocarbon more accessible for the study of biodegradation

A new and affordable rapid sampling technique By Lindsay Reynolds, Dr. K Ulrich Mayer, Dr. Ian Clark

Presented by: Lindsay Reynolds October 12th, 2018 Remediation Technologies Symposium Banff, AB

Faculté des sciences | Faculty of Science

Presentation Overview

- Field Study Old Crow, YT
- Radiocarbon Principles
- Radiocarbon Applications
- BaCO₃ Method Development
- Data/Results
- Q&A

Field Study – Old Crow, YT

- Historic spill of arctic diesel due to fuel handling practices and accidental release during AST upgrade
- PHC impacts in soil to estimated 2mbgs and within suprapermafrost water
- Shallow (~2mbgs) permafrost, proximity to Porcupine River and remote location poses challenges for remedial efforts

(CH2M, 2016 & CH2M, 2015)

Making a case for Natural Source Zone Depletion (NSZD)

- Shallow Permafrost
- Proximity to Porcupine River
- Remote location

(CH2M, 2016 & CH2M, 2015)

Soil Gas flux measurements

Soil CO₂ flux commonly used to estimate Natural Source Zone Depletion (NSZD)

Traditional methods involve measurements both on and off plume

Differences in flux are used to correct for background and apportion CO_2 derived from contaminant degradation

This method does not quantitatively separate soil gas from contaminant degradation and natural soil respiration processes (Sihota & Mayer, 2013)

(units of $\mu mol/m^2 sec^{-1}$)

 $\begin{aligned} J_{CSR} &= Flux \text{ derived from contaminant soil respiration} \\ J_{TSR} &= Total \text{ flux from soil respiration (flux measurement on plume)} \\ J_{NSR} &= Flux \text{ derived from natural soil respiration (background measurement)} \end{aligned}$

Subsurface sources of CO₂ (Sihota & Mayer, 2012)

Radiocarbon Principles

Half life of ~5730 years

Natural Abundances of Carbon Isotopes				
98.9%	$^{12}\mathrm{C}$			
1.1%	¹³ C			
10-12	¹⁴ C			

Maximum dating age of ~50,000 BP

Applications in archaeology, palaeontology, geochemistry, hydrogeology...

Measured by Accelerator Mass Spectrometry (AMS) as an abundance ratio

Radiocarbon Production

Cosmogenic production

- cosmic rays interact with atmospheric nitrogen

¹⁴C quickly oxidizes to form ¹⁴CO and ¹⁴CO₂ compounds

Enters carbon cycle through chemical and biological processes

All living things are in equilibrium with atmospheric ${}^{14}CO_2$

Once metabolic processes end, radioactive decay clock begins

Hydrocarbons are considered radiocarbon free due to geologic age

A measured value of say, 0.80 M¹⁴C, shows 80% of CO₂ contributions from modern processes and 20% of CO₂ derived from hydrocarbon degradation.

Radiocarbon Applications

¹⁴C is useful to distinguish CO₂ derived
from contaminant sources (Conrad et al.
1997)

Soil CO₂ sampled from on and off plume is analyzed for radiocarbon content

Various radiocarbon signatures are paired with flux measurements to correct for natural soil respiration contributions to flux

$$\mathbf{F}_{NSR} = \frac{M^{14}C \ sample}{M^{14}C \ background}$$

$$\downarrow$$

$$\mathbf{F}_{CSR} = \mathbf{1} - \mathbf{F}_{NSR}$$

$$\downarrow$$

$$\mathbf{J}_{CSR} = \mathbf{J}_{TSR} * \mathbf{F}_{CSR}$$
(units of µmol/m²sec⁻¹)

$$\begin{split} F_{\text{NSR}} &= \text{Fraction derived from natural soil respiration} \\ F_{\text{CSR}} &= \text{Fraction derived from contaminant respiration} \\ J_{\text{CSR}} &= \text{Flux derived from contaminant soil respiration} \\ J_{\text{TSR}} &= \text{Total flux from soil respiration (flux measurement on plume)} \end{split}$$

Current Radiocarbon Sampling Methods

Current sampling methods include:

- Collection of mixed soil gas in pre-evacuated 250ml bottles
- Sorbent soil gas traps

These sampling methods involve large costs, extensive sample pre-treatment, and are logistically challenging for remote locations

Mixed Soil Gas Sampling Protocol

 250ml glass sample bottles are cleaned before capping and evacuating contents (< 60 mtorr)

• Mixed soil gas is collected in the field and contained in evacuated bottles via syringe and butyl septa before samples transported for analysis

Mixed Soil Gas Lab Pre-treatment

1. Cryogenically isolate CO₂

2. Convert $CO_{2(g)}$ into graphite $C_{(s)}$

3. Analyze elemental C for ¹⁴C isotopes on the AMS

Wozney et al. 2017

- Samples are returned to laboratory and CO₂ is isolated and graphitized before being pressed into AMS 'target'
- Sample is analyzed on Accelerator Mass Spectrometer (AMS)

Method Development

Radiocarbon research has begun exploring the use of solid carbonate samples for direct analysis in AMS

Longworth et al., 2013 Bush et al., 2013

University of Ottawa explored various compound and matrix combinations to generate best results and a sustainable Accelerator Mass Spectrometer (AMS) current

Yang et al. 2018 (Article in press)

Exploration of applications for Barium carbonate in environmental sampling begin

Main drivers – develop novel technique, decrease cost, ease logistics

Barium Carbonate Sampling Protocol

- Vials are prepared with hydroxide solution
- Soil gas is injected to sample vials in field
- CO₂ is stripped from air and BaCO₃ is left behind

Barium Carbonate Lab Pre-treatment

- Excess solution removed and samples freeze-dried before being pressed into AMS 'target' with matrix material
- Sample is analyzed on Accelerator Mass Spectrometer (AMS)

✓ Decrease cost ✓ Ease logistics

- 2017 sampling containers
- Bottles in photo represent 10 samples (10 of many, many more...)

- 2018 sampling containers
- Photo of 50 samples

✓ Develop Novel Technique

Sample Type	Background (M ¹⁴ C)	Blank (M ¹⁴ C)	Sample ⁴ (M ¹⁴ C)
Mixed Soil Gas	Ox II (1.05)	0.02 ³	0.95
Sorbent Trap	1.05 ¹	0.70	0.93
BaCO ₃	0.95 ²	0.02	0.92

¹ value from Hua et al. 2013, atmospheric ¹⁴C after bomb spike

- ² background value measured from site specific to this study
- ³ mixed soil gas blank high in this dataset, normal values ~0.004 M14C
- ⁴ samples taken on interpreted fringe of plume in non-vegetated area

Duplications

Sample ID	Site Parameter	Sampling Year	M ¹⁴ C	+/-
RC41	Non vegetated - plume	2017	0.91	0.02
RC41 (rep)	Non vegetated - plume	2017	0.89	0.02
RC13	Vegetated – off plume	2017	0.99	0.02
RC13 (rep)	Vegetated – off plume	2017	0.99	0.02

Sample ID	Site Parameter	Sampling Year	M ¹⁴ C	+/-
RC57	Vegetated – plume	2017	0.84	0.02
RC57 (rep)	Vegetated - plume	2018	0.84	0.02
RC46	Non-vegetated – off plume	2017	0.89	0.02
RC46 (rep)	Non-vegetated – off plume	2018	0.90	0.02

Old Crow Site Sampling

- Extensive Flux sampling program by Jacobs (CH2M) using LiCOR in 2017
- 2 sorbent trap ¹⁴C samples collected in 2017
- Site wide application of BaCO₃ sample collection in 2017 and 2018

- Variance in M¹⁴C values can be observed in interpreted areas of known contamination
- Background values range from 1.04 M¹⁴C (vegetation) to 0.83 M¹⁴C
- Central plume M¹⁴C shows greatest depletion

Flux Measurements

- Corrected to average background flux measurement of 1.15 μ mol/m²sec⁻¹ (J_{NSR})
- No interpretation can be made in areas where flux measured is lower than background (where $J_{TSR} < J_{NSR}$)

Flux Measurements

- Corrected to average background ¹⁴C measurement of 0.95 M14C (M14C_{background})
- Interpretations can now be made where reduced flux was recorded

Calculation of Mass Loss

(flux corrected to M¹⁴C)

$$\mathbf{J}_{\mathbf{CSR}} = \mathbf{J}_{\mathbf{TSR}} * \mathbf{F}_{\mathbf{CSR}}$$
(units of μ mol/m²sec⁻¹)

• Corrected flux measurements can be used to determine subsurface mass loss rates

Used to calculate the site mass loss in units of kg/m²/year.

Hydrocarbon Mass Loss

Conclusions

- Radiocarbon as a tracer refines quantification of subsurface hydrocarbon mass loss (NSZD)
- New BaCO₃ precipitation method eases costs and logistics associated with applying radiocarbon to site studies
- BaCO₃ allows for reduced error and site specific background corrections
- Rapid turn around time of BaCO₃ samples allows for quick analysis (2018 samples presented here collected in mid-September)

Acknowledgements

Vuntut Gwitchin First Nation Dr. Ian Clark & Dr. Ulrich Mayer A.E. Lalonde AMS & G.G. Hatch Labs Vlad Rayda & Sarina Cotroneo Amy Jimmo, Vivian Lin, Alan Campbel

Amy Jimmo, Vivian Lin, Alan Campbell, Tom Palaia, Liz van Warmerdam

References

Bush, S.L., Santos, G.M., Xu, X., Southon, J.R., Thiagarajan, N., Hines, S.K., and Adkins, J.F. 2013. Simple, rapid, and cost effective: a screening method for analysis of small carbonate samples 14 c. 55: 631–640.

CH2M. 2016. Regional Permafrost Study : Old Crow, Yukon Government of Yukon, Site Assessment and Remediation Unit Section.

CH2M. 2017. Semiannual Monitoring and Supplemental Phase II ESA Report : Old Crow Nursing Station Government of Yukon , Site Assessment and Remediation Unit.

Clark, I. 2015. Groundwater Geochemistry and Isotopes. In 1st Edition. CRC Press.

Conrad, M.E., Daley, P.F., Fischer, M.L., Buchanan, B.B., Leighton, T., and Kashgarian, M. 1997. Combined 14 C and δ 13 C Monitoring of in Situ Biodegradation of Petroleum Hydrocarbons. Environmental Science & Technology, **31**: 1463–1469. doi:10.1021/es9607143.

Hua, Q., Barbetti, M., and Rakowski, A. 2013. Atmospheric radiocarbon for the period 1950–2010. In Radiocarbon.

- Longworth, B.E., Robinson, L.F., Roberts, M.L., Beaupre, S.R., Burke, A., and Jenkins, W.J. 2013. Carbonate as sputter target material for rapid 14C AMS. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, **294**: 328–334. Elsevier B.V. doi:10.1016/j.nimb.2012.05.014.
- Sihota, N.J., and Mayer, K.U. 2012. Characterizing Vadose Zone Hydrocarbon Biodegradation Using Carbon Dioxide Effluxes, Isotopes, and Reactive Transport Modeling. Vadose Zone Journal, **11**. doi:10.2136/vzj2011.0204.

Wozney, A. 2016. Biodegradation rates of petroleum in contaminated aquifers: a comparison of radiocarbon correction methods for determining source zone natural attenuation. University of Ottawa.

A.E. Lalonde AMS Laboratory – Ottawa, ON

¹⁴C Corrections

** F on this slide denotes FRACTION, not FLUX

Mass Balance Correction

$$F_{CSR} = (1 - F^{14}C_{final})[CO_2]_{final} - (1 - F^{14}C_{initial})[CO_2]_{initial}$$
$$[CO_2]_{final} - [CO_2]_{initial}$$
Simplification (1 sample)

$$F_{NSR} = \frac{F^{14}C_{sample}}{F^{14}C_{Background}} F_{CSR} = 1 - F_{NSR}$$

Atmospheric ¹⁴C

Figure 5 Compiled (extended) monthly atmospheric ¹⁴C curves for 5 different zones (NH zone 1, NH zone 2, NH zone 3, SH zone 3, and SH zone 1-2). The compiled data sets are reported in Tables S3a–e (online Supplementary Material).

uOttawa.ca

Hua et al. 2013

¹²C/¹³C Ratio

Clark, I. 2015

