Thermally Enhanced Biodegradation: Final Step to Rapid Site Closure

Denice Nelson, ERM Jay Dablow, ERM James Baldock, ERM

© Copyright 2018 by ERM Worldwide Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

Introduction	Case Studies	What does this mean?			
• Theory	 Microbial Activity 	• Can we design more			
 Potential Benefits 	 Abiotic Mechanisms 	cost effective systems			

Microbial Stimulation using Heat

n	tre	bd	110	tic	n
	uч	JU	uu	νiic	лт

Effect of Temperature of Microbes

Effect of High Temperature Steam

The business of sustainability

5

Source: Adapted from Richardson et al 2002

Potential Benefits: High Temp Thermal

More Cost Effective

Shorter run time

Smaller Footprint

Role of Biotic & Abiotic Mechanisms

Case Study 1: 1990's Steam and Fuel Oil

Introduction

- Site located in the Pacific Northwest
- Technology demonstration to recover No. 6 Fuel Oil
- Impacts to ~100 ft bgs

■ Total Microbial Counts (cfu/g)

The business of sustainability

Case Study 2: Microbial Activity

- Combined bio/thermal remedial strategy at a site in the UK.
- Active heating in steam areas and downgradient EVO application
- Study included evaluation (2 years) microbiological activity within the thermal treatment source zone both pre- and post remediation

Source Treatment

12

ERM

Microbial Characterization

- Baseline and post heating:
 - qPCR for Dehalococcoides
 - VOCs

The business of sustainability

Summary - 2 Years Post Thermal

- VOC concentrations continue to decrease 2 years post heating
- A viable dechlorinating population observed post high temperature thermal and can be used to polish residual concentrations

 Endpoints achieved for this project (sampling terminated), but if low concentration goal needed carbon amendment could be used to enhance the rate of the polish

Project Objectives:

- Heat the groundwater to above the TCE co-boiling point to volatilize VOCs, extract the VOCs, and treat above ground
- Degrade the VOCs in-situ through biotic and abiotic processes

Potential Breakdown Pathways

TCE Results

Active heating: reached targeted temperatures (>100 °C)

No observed daughter products during active heating period

- CSIA δ13C results show significant change in isotope ratios pre/during thermal treatment
- Higher δ13C confirm significant degradation of TCE has occurred

Case Study: Can we design smarter?

Field sample collection & baseline sampling

Lab-based steam flooding

Post Flooding Laboratory Analysis

- Soil homogenized
- Sampled for microbes and key analytical parameters

- Flooded 1, 2 and 4 pore volumes (PVs)
- Note: typical field steam applications flood 100's of PVs

- Cooled to 40°C
- Sampled at 14 and 21 days for microbes and key analytical parameters

Case Study: Can we design smarter?

Introduction

Comparison of Soil and Groundwater Microbial Population Fingerprints

The business of sustainability

Case Study: Can we design smarter?

What does this mean?

Field sample collection & baseline sampling	Lab-based steam flooding	Post Flooding Laboratory Analysis

	1 Pore Volume			2 Pore Volumes			4 Pore Volumes		
Parameter	Time 0 (µg/Kg)	1 PV (µg/Kg)	% Change	Time 0 (µg/Kg)	1 PV (µg/Kg)	% Change	Time 0 (µg/Kg)	1 PV (μg/Kg)	% Change
Ethylbenzene	36.5	ND	-100%	55.7	ND	-100%	ND	ND	-
Total Xylenes	350	64.9	-81%	584	29.3 J	-95%	155	30.0	-81%
GRO	54,700	24,600	-55%	73,600	14,800	-80%	50,700	16,300	-68%
DRO	7,190	4,110	-43%	6,710	3,920	-42%	6,790	4,010	-41%
Soil Moisture	6%	12%	+6%	6%	13%	+7%	6%	7%	+1%

- Short-term steam flooding reduced concentrations of VOCs and TPH
- Short-term steam flooding (1 to 4 PV) does not appear to inhibit microbial growth ۲
- Possible to rely on microbes to enhance natural attenuation rates during, and post steam flooding •
- Microbial activity appears to be enhanced by the presence of steam ۰ (heat, enhanced moisture, and potentially greater oxygen content)

What does this all mean?

- Thermal remedies run off of mass recovery:
 - Biotic/abiotic inherently built in
 - Provide factor of safety

 Thermal remedies are costly to implement – price of failure is high

What does this mean?

Case Studies

- Feasible to not run conservatively long
- Enhance pace to lowlevel groundwater standards with biological amendment

Contact Info

RemTech 2018

October 10-12, 2018 - Fairmont Banff Springs

Denice Nelson Partner | Minneapolis, Minnesota T| 612.386.4618 E| <u>denice.nelson@erm.com</u>

Jay Dablow Technical Fellow | Irvine, California E| jay.dablow@erm.com

James Baldock Technical Director | Oxford, U.K. E| james.baldock@erm.com

