

Forensic Evaluation in Heavily Degraded Crude and Middle Distillate Releases

Heather Lord, Maxxam Analytics, Mississauga, ON Canada

How Can Forensics Evaluations be performed on Heavily Degraded Oils?

Outline

- Introduction to petroleum biomarkers and oil degradation
- Properties, degradation resistance and laboratory determination
- Biomarkers for degraded petroleum releases
 - Source determination vs. weathering
- Case studies

Petroleum Biomarkers

Components of petroleum with a known link the biological material the deposit was derived from

- More resistant to degradation than the paraffins (alkanes).
- Used extensively in petroleum exploration.
- Used in forensic identification of <u>source</u> and <u>degree of weathering</u> for spills investigations since ~1980s.

Petroleum Biomarkers

Components of petroleum with a known link the biological material the deposit was derived from

- More resistant to degradation than the paraffins (alkanes).
- Used extensively in petroleum exploration.
- Used in forensic identification of <u>source</u> and <u>degree of weathering</u> for spills investigations since ~1980s.

Petroleum Biomarkers

Components of petroleum with a known link the biological material the deposit was derived from

- More resistant to degradation than the paraffins (alkanes).
- Used extensively in petroleum exploration.
- Used in forensic identification of <u>source</u> and <u>degree of weathering</u> for spills investigations since ~1980s.

Laboratory Determination

- Monitored by GC/MS using fragment ion specific to the biomarker class.
 - SIM Mode is preferred.
- Confirmation ions must also be monitored as well
 - Other petroleum components often have the same target ion.

Solvent Extract: product/water – hexane soil: - acetone/hexane

Column Fractionation:

- Aliphatics
- Aromatics

Both extracts analysed by GC/MS

Wang, Z. et al. Environ. Foren. 2006, 7, 105-146.

Typical Weathering Patterns

Crude Oil Weathering

25 year old oil spill.

- Oil 30-40 cm deep looks fresh: very similar to reference spilled oil.
- Oil at the surface (0-2 cm) looks either highly weathered or like fresh mature (heavy) oil

Crude Oil Profiles

- This was a heavy oil spill.
- If you hadn't seen the source oil profile, you would have thought the spilled oil was highly degraded!!
- In reality, it has only lost a bit of the light front end, consistent with a few days of sun/heat or water exposure.

Biomarkers for Mature / Weathered Petroleum

Source and Weathering Determinations:

- Bicyclic Sesquiterpanes
- Alyklcyclohexanes
- Polycyclic Aromatic Hydrocarbons

Source Determinations:

- Diamondoids
- Terpanes
- Hopanes
- Steranes
- Monoaromatic Steranes
- Triaromatic Steranes

Relative degradation resistance

- The 'Kaplan stages of biodegradation' published in 1997, are still well recognized 20 yrs later.
- Stages define the order of degradation
 - Late stage biomarkers are most resistant to degradation.
- > Originally proposed for heating oil / diesel
 - Applicable to all petroleum crudes and products.

Stage	Description		
1.	Abundant <i>n</i> -alkanes, red dye still present*		
2.	Light-end <i>n</i> -alkanes removed		
3.	Middle-range n-alkanes, benzene, toluene removed		
4.	More than 90% of <i>n</i> -alkanes removed		
5.	Alkylcyclohexanes & alkylbenzenes removed		
6.	Isoprenoids, C ₁ -naphthalenes, benzothiophene and alkylbenzothiophenes removed, C ₂ -naphthalenes selectively reduced		
6.5.	Bicyclic Sesquiterpanes		
7.	Phenanthrenes, Dibenzothiophenes and other PAHs reduced		

Helpful for both source determination and weathering assessment once mid-range alkanes are degraded.

N-Alkylcyclohexanes (ACH)

- Present in both crude oils and refined petroleum products.
- Distribution profiles in refined products is related to the refining processes.
 - i.e. before ACH degradation begins, distribution indicates the original product.
- After ACH degradation begins, peak distribution speaks to relative aggressiveness and type of weathering in the sample.

14

Alkylcyclohexanes

- In <u>anaerobic</u> environments, the longer-chain ACHs are lost first
 - shorter-chain ACHs appear to increase.
- In <u>aerobic</u> environments, shorterchain ACHs are lost first.
- If the release is significantly weathered the ACH distribution from a crude may look like that of diesel.

ACH Weathering

ACH Case Study

Oil collected at surface, soil collected at depth.

Bicyclic Sesquiterpanes

- Cyclic paraffins (naphthenes) with 14 16 carbons.
- Derived from microbial and plant terpenes.
- Present in all crude oils.
- Produced through thermal maturation in the petroleum reservoir through removal of oxygen and double bonds.
 "Fossilization"
- Enriched during the distillation processes used to produce middle distillates: e.g. diesel, heating oil, kerosene
- Immature crudes have high C14 sesquiterpanes
- Mature crudes have high C15-C16 sesquiterpanes

Typical Weathering Patterns

A Bureau Veritas Group Compan

Role(s) in forensic investigations

Overview:

• First used in forensic oil spill investigations ~2005

Source Determination:

- Recognized as 'highly diagnostic' for middle distillates (Wang et al. 2005)
- Ten bicyclic sesquiterpanes commonly used for oil source determinations: BS-1 BS-10.
- Numerous ratios are used for comparisons.

Weathering Determination:

- The same markers (BS-1 BS-10) & ratios used.
- More care needed in ratio selection.

Hostettler, F.D. et al. Envir. Forensics 2013, 14, 262-277.

Case Study

- Fuel oil release in a residential basement (AST).
- Impacted soil found 6" below concrete slab.
- Fuel oil had been used for several decades.

Question: Are the soil impacts related to the current release or historic?

- Pr/Py ratios identical between oil and soil.
- C17/Pr and C18/Py different between oil and soil.

Ratios	Oil Avg.	Soil
C14 Ratios		
1/2	1.84	n/c
C15 Ratios		
3/5	0.34	0.21
4/5	0.29	0.22
4/6	0.52	0.45
6/5	0.56	0.50
C16 Ratio		
8/10	0.11	0.10
Intergroup Ratios		
1/3	1.14	0.42
1/5	0.39	0.09
3/10	0.34	0.11
5/10	0.99	0.54

Coloured cells: RPD > 14%

Conclusion:

Even when accounting for evaporation, data suggest soil impact is from a different source.

PAHs Source Determination

Naphthalenes

Boehm, P.D. Marine Pollut. Bull. 1997, 34, 599-613.

PAH Case Study – Source Determination

PAH Case Study 1

Weathered PAHs

Stogiannidis, E. Rev. Environ. Contam. Toxicol. 2015, 234, 49-133.

PAH Case Study 2

alkylated PAH mg/kg 2.5 2 1.5 1 0.5 0 ு 7,12ŝ 6 3 5 R ...

- Soils, heavily degraded fuel oil, from beneath a concrete slab in a basement. Suspected to be up to several decades old.
- Is it only one source??

29

PAH Weathering Ratios – Cross Plots

Douglas, E.S., Environ. Sci. Technol. 1996, 30, 2332-2339.

Sauer, T.C. Environ. Int., 1998, 24, 43-60.

Conclusions

- Common petroleum forensic approaches cannot be used in cases of advanced weathering.
- More recalcitrant and/or heavier biomarkers may be useful.
 - Alkylcyclohexanes
 - Bicyclic Sesquiterpanes
 - Alkylated Polycyclic Aromatic Hydrocarbons
- Consider weathering patterns of these biomarkers in all evaluations.
 - Relative degrees of weathering indicate relative ages of impact under similar site conditions
- Source similarity determinations should only be made from biomarkers that have not started to weather.

THANK YOU

Heather Lord: hlord@maxxam.ca