

For a balanced environment...

Water Hardness Ion Mixtures and Chloride Toxicity Towards Aquatic Life

> REMTECH 2018 Banff, Alberta

Anthony Knafla, M.Sc., DABT, P.Biol FWAL Group

Acknowledgements

- PETROLEUM TECHNOLOGY ALLIANCE CANADA (PTAC)
 - ALBERTA UPSTREAM PETROLEUM RESEARCH FUND (AUPRF)
 Project Champion:
 Linda Eastcott (Imperial Oil Ltd)
- TOXICITY TESTING LABS
 - Wisconsin State Laboratory of Hygiene
 - Warnell School of Forestry and Natural Resources
 - Nautilus Environmental
- EQUILIBRIUM SCIENTIFIC STAFF
 - Anthony Knafla
- ADDITIONAL CONTRIBUTIONS
 - lan McIvor (previous work)

Brief Background

- Natural Sources of Chloride
 - Marine evaporite, weathered geological material, wildfires, sea spray
- Anthropogenic sources
 - Road salts for winter motorist safety/
 - Single largest use of salt, Major loading in urban areas
 - Industrial effluents, irrigation drainage, municipal waste water, etc.
 - Oil and gas activities (produced water)
 - Salt blocks, manure applications
- Ambient chloride Concentrations.
 - Lakes & Rivers typically < 100 mg/L
- CCME (2011) guideline derived a chronic guideline of 120 mg/L
 - Indicated that adjusting for water hardness may be appropriate, however, some data are equivocal and more study needed
- In Alberta, Saskatchewan, and NE British Columbia, chloride aquatic life guideline is a major driver of remediation at oil and gas impacted sites due to produced water releases
 - Driver for funding of research for hardness influence on chloride toxicity to petition to CCME for updating a national guideline

Research Method - Guideline Development

Chloride Cation-Specific Differences

- The is a clear different in toxicity between different cations associated with chloride
- Requires some evaluation of cation toxicity

There is also evidence of a complex interaction for mixtures of

salt ions

KCl different in toxic potency compared to CaCl₂, MgCl₂, and NaCl

KCI considered distinct toxicant ion pair - excluded from dataset - needs to be addressed separately

MgCl dataset is weak

NaCl & CaCl₂ toxicity is similar

Also Exploring Anion Differences and Ion Pair Differences

- The is a clear different in toxicity between different cations.
- Seeing notable differences between ion combinations and looking for some unifying mechanisms or explanations
- Found nutrient status can be a major factor (for algae)

Hardness Relationship - Chloride Toxicity

- Variable water hardness in Canada (NRCAN, 1978)
- If chloride toxicity varies with hardness, then guideline across Canada should vary

Hardness = Sum of polyvalent cations $(Ca^{2+} \& Mg^{2+}) = 2.5[Ca^{2+}] + 4.1[Mg^{2+}]$

Water Hardness Influence on Guidelines

- Literature data indicates hardness may modify chloride toxicity.
 - Possible mechanisms:
 - Competition for binding sites (Paquin et al 2002)
 - Ion pairing (Davies & Hall 2007)
 - Ca²⁺ impact on membrane permeability (Penttinen et al 1998)
 - Electrochemical gradient changes
- Regulatory guidelines have considered hardness (Cd, Zn)
- lowa (IDNR 2009)
 - Guideline corrected for TMFs (water hardness)
 - Chronic guideline: 250 –624 mg/L over hardness from 50–800 mg/L
- Governments of Australia and New Zealand consider water softness an important factor in sodium chloride toxicity (ANZECC, 2000)
- Elphick (2011) published a means of evaluating reduced chloride toxicity due to increasing hardness

SSD Database Development

- Citation search resources.
 - Existing reviews, USEPA ECOTOX Database, ISI Web of Knowledge
- Minimum data quality requirement (CCME, 2007)
 - Primary, Secondary, Unacceptable
- Experimental Variables
 - Effect [conc], other ion [conc], exposure durations, hardness, endpoint, taxonomic details, O₂, temp, pH, life stage, etc.
- Summary of dataset collection
 - >200 studies
 - 2077 entries: Unacceptable: 16%;

NaCl: 37%; KCl: 12%; CaCl₂: 4%;

MgCl₂: 1%; multiple ions: 30%

Short-Term Chloride Guideline Derivation

Hazen Plotting Position (HPP)

Long-Term Chloride Guideline Derivation

 Previous literature data was inadequate for hardness adjustment based on EPA and other guidance for a chronic endpoint

Short-Term Hardness Adjustment

- Clear relationships between increasing hardness and decreasing chloride toxicity - to a point
- studies not showing relationships frequently had study design issues and often were not targeted to evaluated hardness relationships

Long-Term Hardness Adjustment

 Clear relationships between increasing hardness and decreasing chloride toxicity – to a point

Hardness Adjusted Long-Term SSD Derivation

- Following adjustment, order of species can change due to hardness conditions under which the experiments were conducted
- Driver is still one of the mussel species that is 'untestable'

Hardness Adjusted Long-Term SSD Derivation

- Following adjustment, order of species can change due to hardness conditions under which the experiments were conducted
- Driver is still one of the mussel species that is 'untestable'

HOT OFF THE PRESS! MAYFLY TOXICITY

- Nautilius environmental completed Mayfly toxicity testing as it was determined by the FWAL team that having an EPT species is critical
- General pattern of decreased chloride toxicity with increasing hardness observed (preliminary results) - mayfly don't like soft & very hard water (had higher control mortality)

Some Points to Consider

- Consistently, lab water toxicity experiments produce effects at lower concentrations than field water
 - Results shown below d. Magna, but same results seen for multiple frog, mussel, and other species
 - All studies used here are lab water experiments implies that for a number of species, there is an added level of conservatism (good)
 - For non-lab cultured species used in toxicity testing (e.g., wild type),
 clear difference in toxicity depending on source water of collection

 Sensitive mussel species re-tested by same author just different source of mussels had an EC₁₀ in the 100s of mg/L rather than in the 10s of mg/L

Fin.

Questions?