Innovation that provides sustainable solutions to complex challenges worldwide

Thermal Treatment of Per- and Polyfluoroalkyl Substances (PFAS) in Soil

Scott A. Grieco, Ph.D., P.E – Principal Engineer | North American Practice Leader

RemTech, Banff, AB – October 10-12, 2018

www.jacobs.com | worldwide

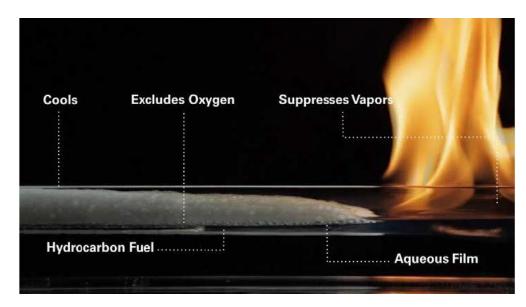
Outline & Acknowledgements

Background

Thermal Treatment Testing Data

Implications

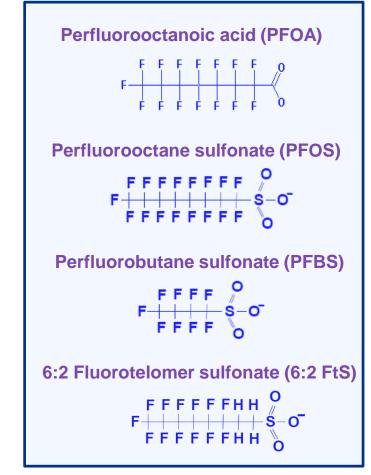
• Future Plans


Jacobs

- Katie Rabe
- Laura Cook
- Bill DiGuiseppi
- Iron Creek: Roger Richter
- SGS
 - Tim Fitzpatrick
 - Richard Grace
 - Sean Campbell
- Battelle: Ramona Darlington

Aqueous Film Forming Foam (AFFF)

- Military Use
 - Crashes
 - Fire Training Areas
- Commercial Fire Fighting
 - Rail
 - Airports
 - Fire Training Areas
- Industrial Fire Fighting
 - Tank Farms
 - Refineries



http://williamsfire.com/files/PDFs/TFPP-C8-to-C6-Transition-Bulletin.pdf

AFFF Chemistry

- Per and polyfluorinated alkyl substances (PFAS)
- >300 individual PFAS
 - ~80% of PFAS mass in AFFF
- Major Components of AFFF
 - PFOA
 - PFOS
 - PFBS
 - 6:2 FtS

Concerns with Major AFFF Components

- Recalcitrant
 - Carbon-Fluorine bond is strong and stable
- Highly mobile in the environment
 - Both hydrophobic & oleophobic
 - Infiltrate readily to the groundwater
- Chemical structure similar to fatty acids
 - Readily absorbed into blood serum
 - C8 Panel identified effects on human health
 - Half-life: 5.4 yrs for PFOS / 3.8 yrs for PFOA

Lac-Mégantic derailment in Quebec

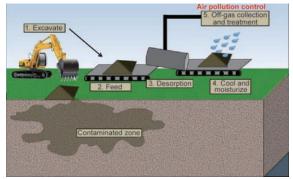
Soil Remediation - Practiced

Excavation

- Landfilling retains liability
- Incineration: energy/carbon footprint concerns
- Stabilization/Sorption
 - RemBind (Ziltek's carbon, AA, kaolin clay)
 - Longevity?
- Soil washing
 - Waste stream handling

Thermal Desorption

- Low temperature (100-300 C)
- Medium temperature (300-600 C)
- High Temperature (600-1000 C)

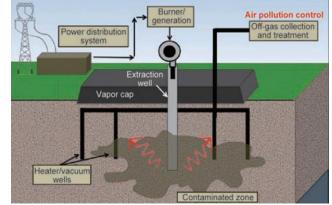


Thermal Desorption – Ex-Situ

- Typical Configurations
 - Rotary Kiln
 - Rotary Screw
 - Batch
- Heat Methods
 - Direct fired (Heated air in contact with soils)
 - Indirect fired (Heated Surface in contact with soils)
 - Flame
 - Infrared
- Air Emission

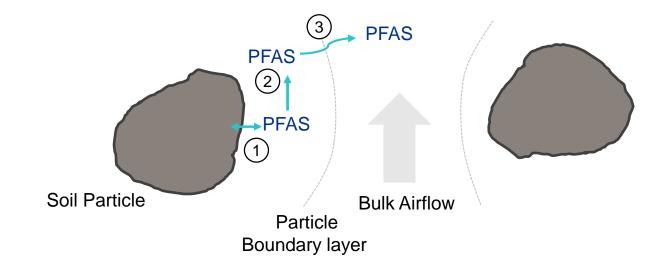
8

Capture and mitigate



Vidonish et. al., 2016

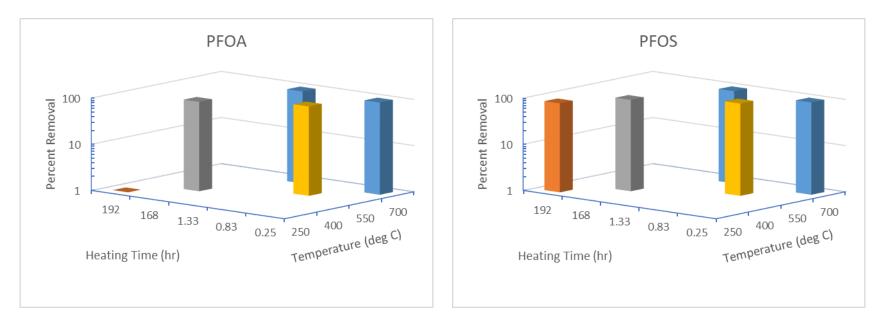
Thermal Desorption – In-Situ


- In place
 - Vadose Zone
 - Groundwater table depression
- Soil Piles
 - Sprung Structure for vapor capture
- Heat Methods
 - Indirect fired (Heated Surface in contact with soils)
- Air Emission
 - Capture and mitigate

Vidonish et. al., 2016

Conceptual Model for Desorption

- 1. <u>Desorption</u>: Impart energy to overcome sorption
- 2. <u>Sublimation</u>: Impart Energy to drive into gas phase
- 3. <u>Diffusion</u>: from boundary layer to bulk air phase



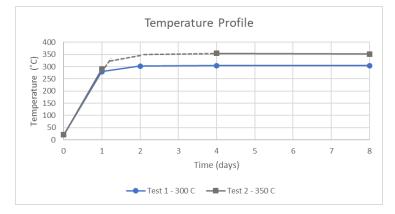
Previous Low (250 C) and High Temperature (>450 C) Studies

Study	Thermal Method	Initial Total PFAS Conc. (µg/kg)	% Reduction in Total PFAS	Exposure Temperature/Time	PFAS Analyzed
Iron Creek/ Jacobs	Infrared Heating	200	26	250°C for 8 days	24 PFAS analyzed
Endpoint/ Jacobs	Vapor Energy Generator	40	Minimal 50 >99.9	482°C for 15 mins 593°C for 15 mins 954°C for 30 mins	10 PFAA analyzed
Iron Creek/ Jacobs	Infrared Heating	290	89.3-99.8 97.3-100 99.8-100	400°C for 60 mins 550°C for 50 mins 700°C for 80 mins	24 PFAS analyzed
Confidential	Rotary Kiln	175	>99.9	450°C for <20 min	20 PFAS analyzed
Confidential	Rotary Kiln	1200	>99	700°C for <20 min	16 PFAS Analyzed

JACOBS

Time-Temperature Data: Thermal Desorption

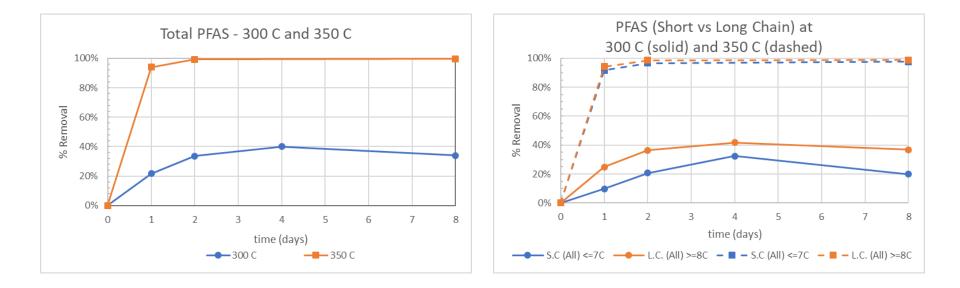
 Clear threshold in the medium temperature range: >250 °C and <400 °C

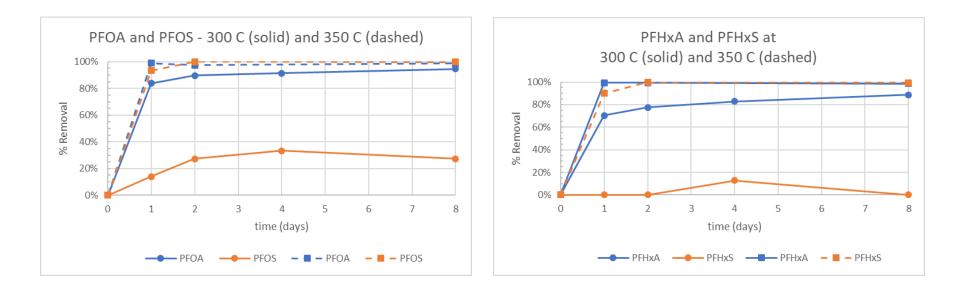


Pilot Study : Medium Temperature Testing

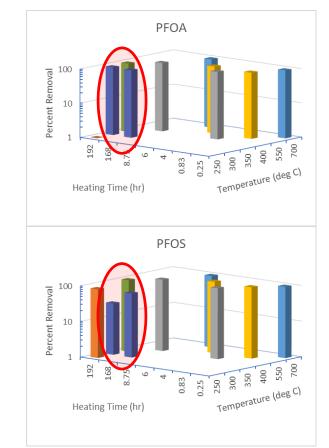
- Tested infrared thermal treatment
- 1 cubic foot bench test chamber
- Soil samples collected after heating to 300°C and 350°C.
- Samples collected at 1, 2, 4, and 8 days
- Samples analyzed for 24 PFAS compounds by SGS AXYS.

Parameter	PFAS	PFCA	PFOA	PFSA	PFOS
Initial Conc. (μg/Kg)	151	24.7	5.52	118	96





Medium Temperature Results – Total PFAS


Medium Temperature Results

Testing Summary

- Appears PFSA are more strongly bound
 - require higher temperature (more energy) for desorption
- Data supports excellent removal at 350 C
 - Reaches maximum removal in >2 days of heating
 - >99.4% removal of total PFAS
- Low end of "Medium temperature" Thermal Desorption
 - Cost savings for lower energy input
 - Options for both ex-situ and in-situ application

Next Steps: Need for Field Scale Data

- Evaluate PFAS-soil interactions with various soils
 - Clay / humic material / sandy soil
 - Implication to both desorption and diffusion steps
- PFAS Mass Balance on process
 - Wall surface, vapor capture, final emissions
- Air emissions management
 - Collection / Capture
 - Particulate removal
 - Direct Treatment vs Condensation
 - Adsorption vs Oxidation

Future Work Planned

- SERDP Supplemental Investigation (US DoD Funding)
 - Field Demonstration of Infrared Thermal Treatment of PFAS-contaminated Soils from Subsurface Investigations
- Potential soil pile tests at USAF & AU Defence installations
 - Would use excess steam from power plant for electricity generation
 - Supplemented with natural gas
 - Constructed soil pile would be limited in size
 - Ultimate concept would be large soil pile
 - Would test for 30 to 90 days

Thank you for your time Questions?

Scott Grieco, Ph.D., P.E. Scott.Grieco@jacobs.com

www.jacobs.com | worldwide

Consideration of the Limiting Processes

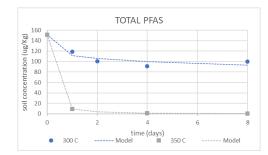
- Desorption
 - Energy to desorb is greater than energy to adsorb {enthalpy ΔH^{0} }
 - Ionic interactions stronger than physical adsorption

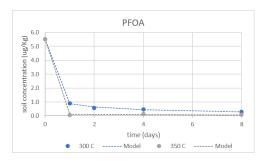
$$-\Delta G^{\circ} = RT \ln(K) = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT}$$

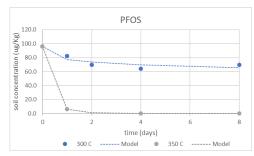
- Sublimation
 - Boiling temperatures of PFAS > H_2O (PFOA = 189 °C)
 - ex. PFOA: ΔH_{sub} = 90.9 KJ/mol compared to ΔH_{vap} = 46.8 KJ/mol
- Diffusion

20

$$D \propto \frac{T^{1.75}}{P \ V_d^{0.67} \ M^{0.5}}$$




Desorption Rates: 1st Order Kinetics


$$C = C_0 e^{-kt^n}$$

k – kinetic desorption rate constant n – intensity factor

Parameter	PFAS	PFCA	PFOA	PFSA	PFOS	
Co (ug/Kg)	151	24.7	5.52	118	96	
	300 C					
k	0.306	1.34	1.85	0.176	0.220	
n	0.219	0.187	0.225	0.278	0.268	
	350 C					
k	2.82	3.29	3.81	2.64	2.72	
n	0.402	0.050	0.090	0.47	0.758	

