

Case Studies: Overcoming Annoying Contaminant Rebound Using Adsorptive Technologies

RemTech – Banff, AB October 11, 2018 Kevin French

Presenter

Kevin French, P.Eng

- Vice President, Vertex Environmental Inc.
- B.A.Sc., Civil/Environmental Engineering, University of Waterloo
- 30+ years environmental engineering; 25 in consulting and last 6 as a remedial contractor

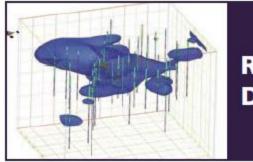
Vertex Environmental Inc.

- Founded in 2003
- Bruce Tunnicliffe, M.A.Sc., P.Eng.
- Specialized Environmental Remediation Contracting
- High Resolution Site Characterization (HRSC)

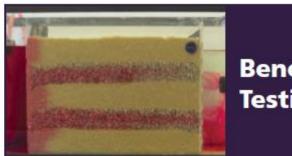
VERTE

Vertex Environmental Inc.

In-Situ Remediation



Ex-Situ Remediation



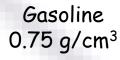
High Resolution Characterization

Remedial Design

Bench-Scale Testing

Presentation Overview

- Common Organic Contaminants
 - What They Are and How to Find Them
 - Why Are They a Problem?
 - Common Approaches to Remediation
- Case Studies
 - Neighbour to Former Dry Cleaner
 - Former Underground Storage Tank
 - Two More "Quickies"
- Closing Thoughts
- Questions


Common Organic Contaminants What They Are and How to Find Them

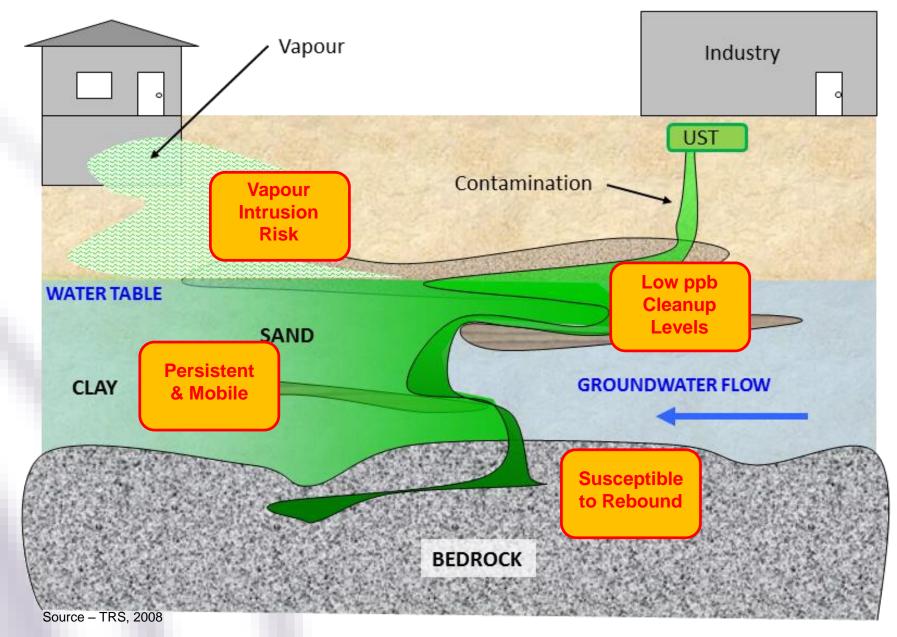
Common Organic Contaminants

LNAPL

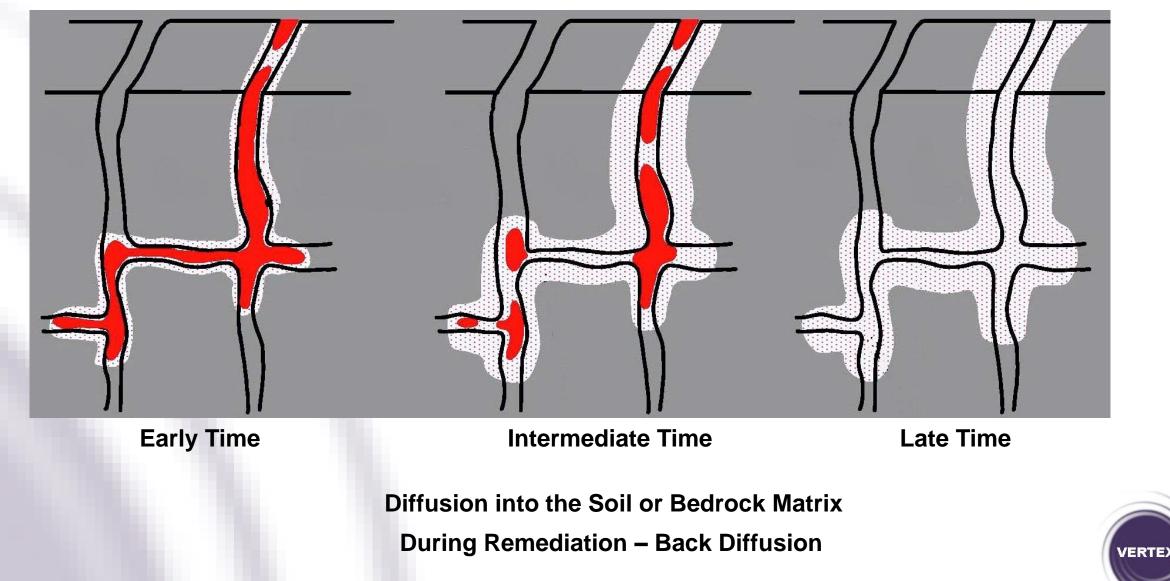
DNAPL

Petroleum Hydrocarbons (PHCs)

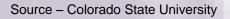
- Lighter than water ("floaters", LNAPL)
- Gasoline, diesel, motor oil, fuel oil, etc.

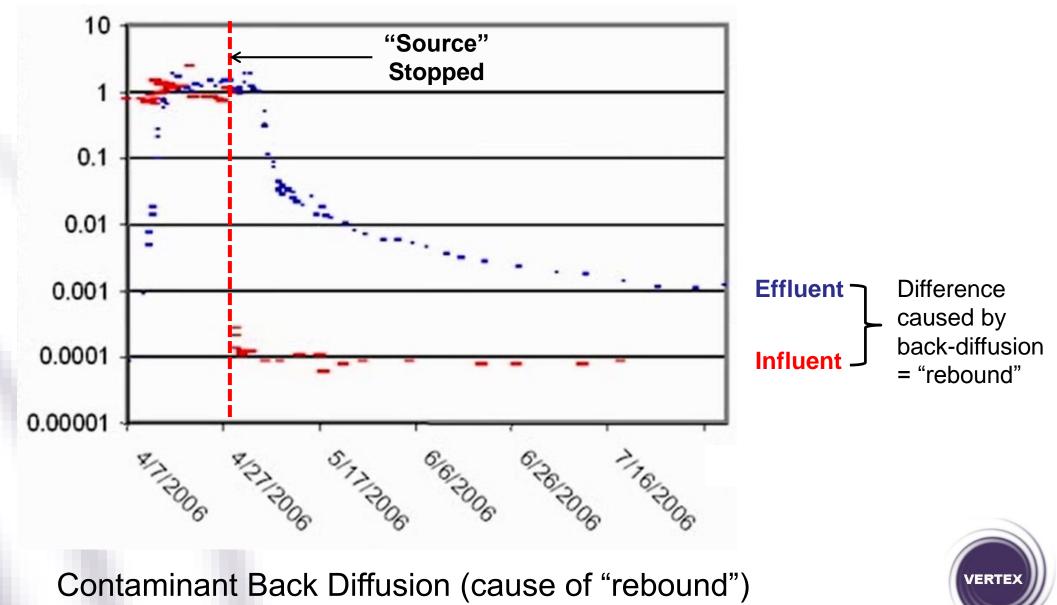

Chlorinated Solvents (cVOCs)

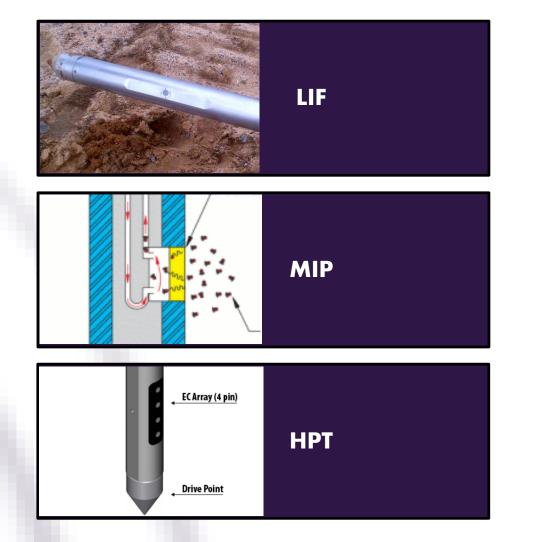
- Heavier than water ("sinkers", DNAPL)
- Tetrachloroethylene (PCE), trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), etc.
- Were commonly used for dry cleaning, degreasing, etc.



TCE 1.46 g/cm³




Source: Beth Parker


Contaminant Back Diffusion (cause of "rebound")

VERTE

High Resolution Methods to Find Organic Contaminants

Laser Induced Fluorescence (LIF)

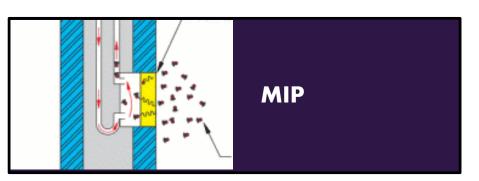
 Free Phase PHCs / LNAPL

Membrane Interface Probe (MIP)

 Dissolved Phase PHCs and VOCs

Hydraulic Profiling Tool (HPT)

Subsurface Permeability
 and Conductivity Est.



High Resolution Methods to Find Organic Contaminants

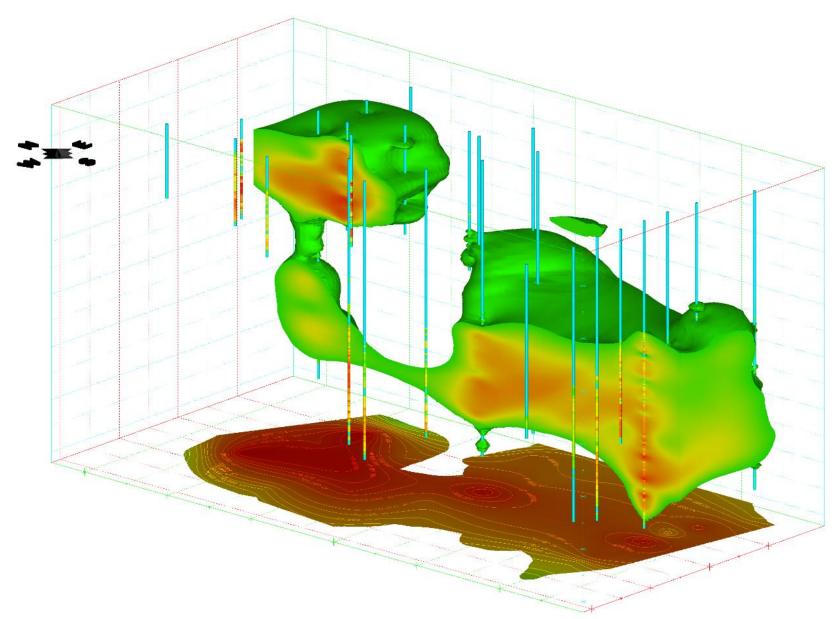
Membrane -

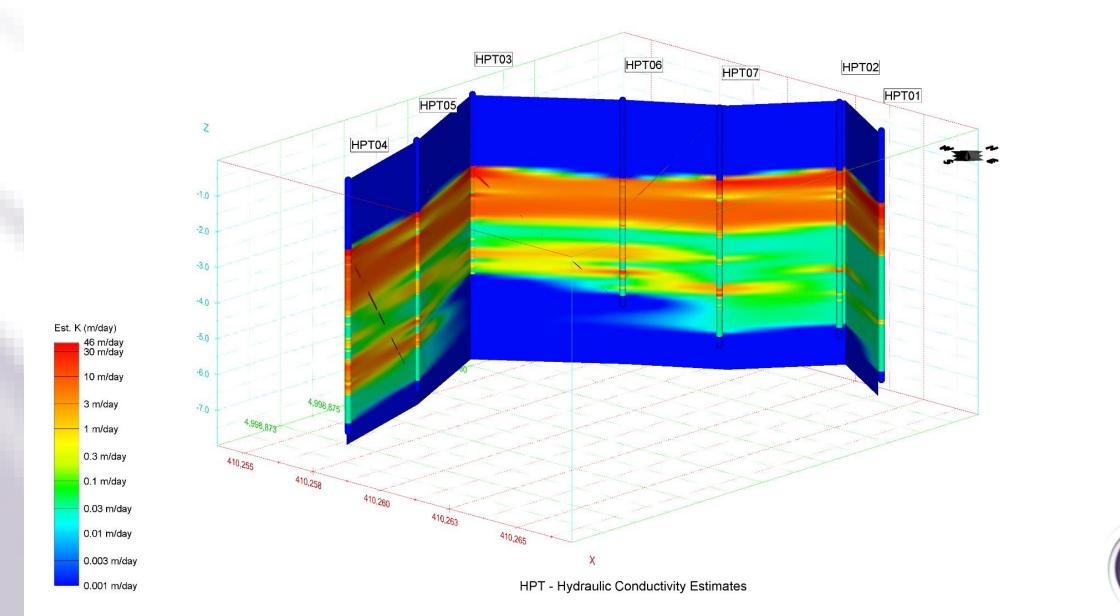
Heater Block

EC Dipole

Membrane Interface Probe (MIP)

- Three detectors:
 - Photoionization Detector (PID)
 PHCs cVOCs
 - Flame Ionization Detector (FID)
 PHCs
 - Halogen Specific Detector (XSD)
 cVOCs
- Detection of VOCs:
 - Petroleum Hydrocarbons (BTEX, PHCs)
 - Chlorinated Solvents (TCE, PCE, TCA, etc.)
- Electrical Conductivity
 - Classify soil


High Resolution Methods to Find Organic Contaminants – Field Work



High Resolution Methods to Find Organic Contaminants – Visualization

High Resolution Methods to Find Organic Contaminants – Visualization

VERTEX

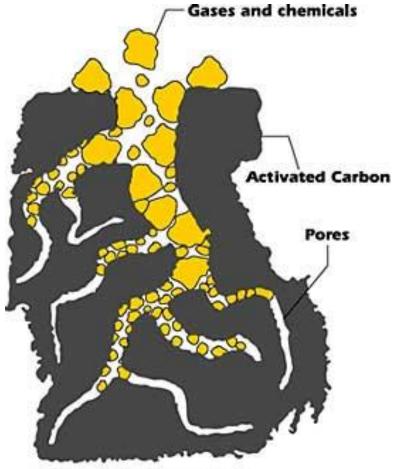
Common Remediation Approaches

- "Do Nothing" / Monitored Natural Attenuation
- Excavation and Off-Site Disposal
- Chemical Oxidation & Reduction
- Permeable Reactive Barriers (PRBs)
- Adsorption-based (Trap & Treat®)
- Enhanced Bioremediation (aerobic & anaerobic)
- Systems Technologies & Phase Separation
- Sub-Slab Depressurization (vapour intrusion mitigation)
- Risk Assessment / Risk Management
- Combinations of the above

Remedial Amendments

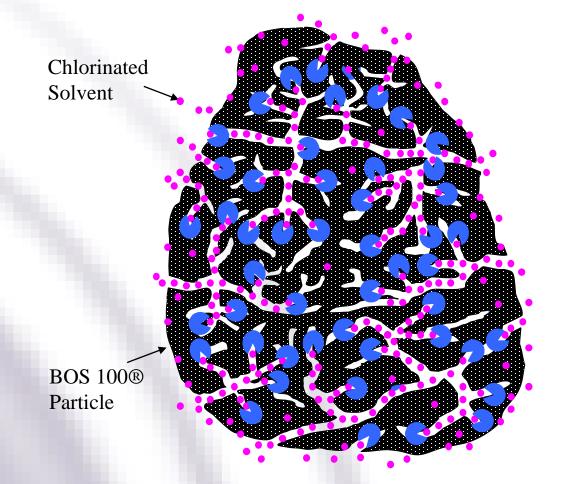
- Trap & Treat® BOS 100® for cVOCs
- Trap & Treat® BOS 200® for PHCs
- Application using temporary points or by direct soil mixing
- Plume remediation or PRB applications

Mechanisms of BOS 100® and BOS 200®


- "Trap" the contamination within the AC matrix
- "Treat" within the matrix using amendment

Benefits

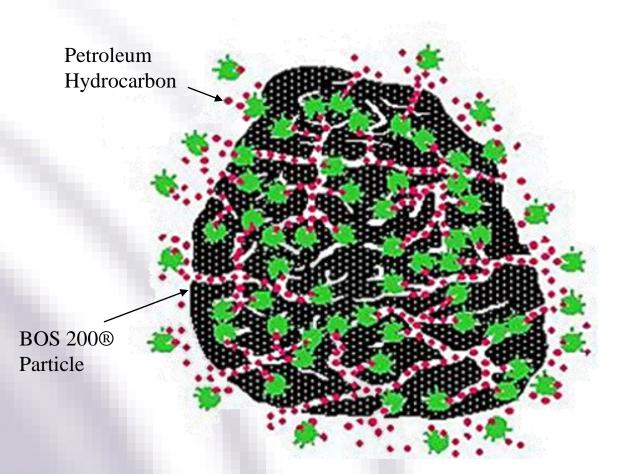
- Usually Single Application
- Long-Term Solution
- Back Diffusion Control = Prevents "Rebound"



Activated Carbon adsorbs gases and chemicals

Activated Carbon Adsorption

BOS 100® - for cVOCs


Activated Carbon & Iron

Source: AST Environmental

BOS 200® - for PHCs

Activated Carbon & Nutrients & Microbes

Source: AST Environmental

Case Studies

Site Background

- Site adjacent to former dry cleaner property
- Full remediation required

Contaminant Situation

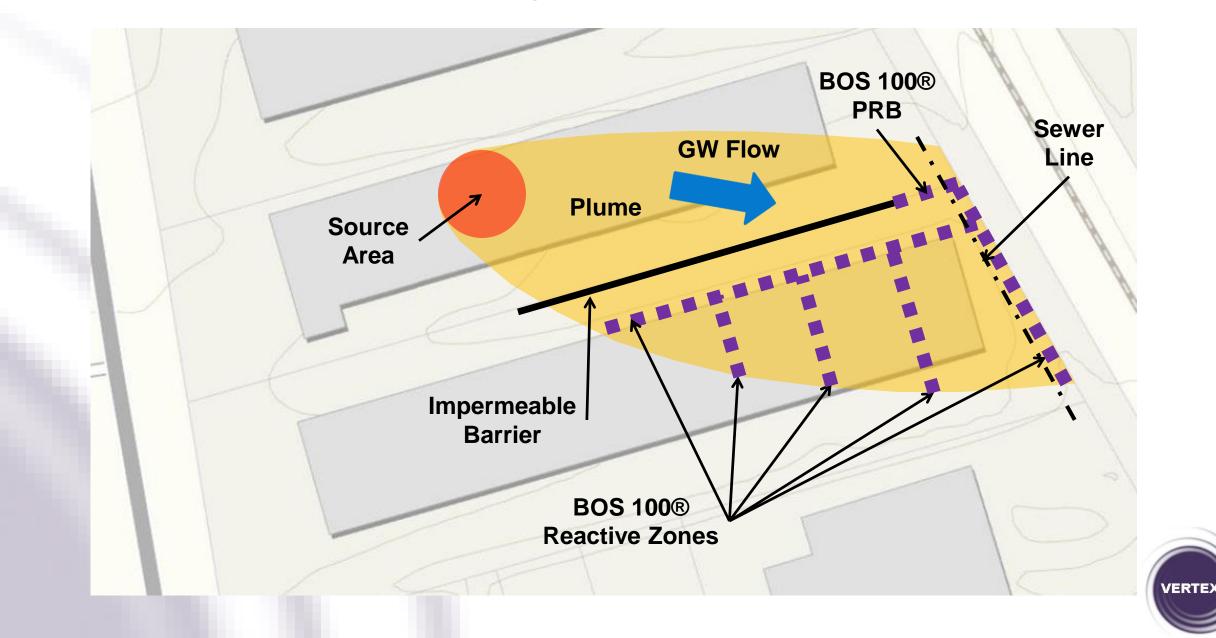
• Plume of cVOCs flowing through the Site (entering and leaving)

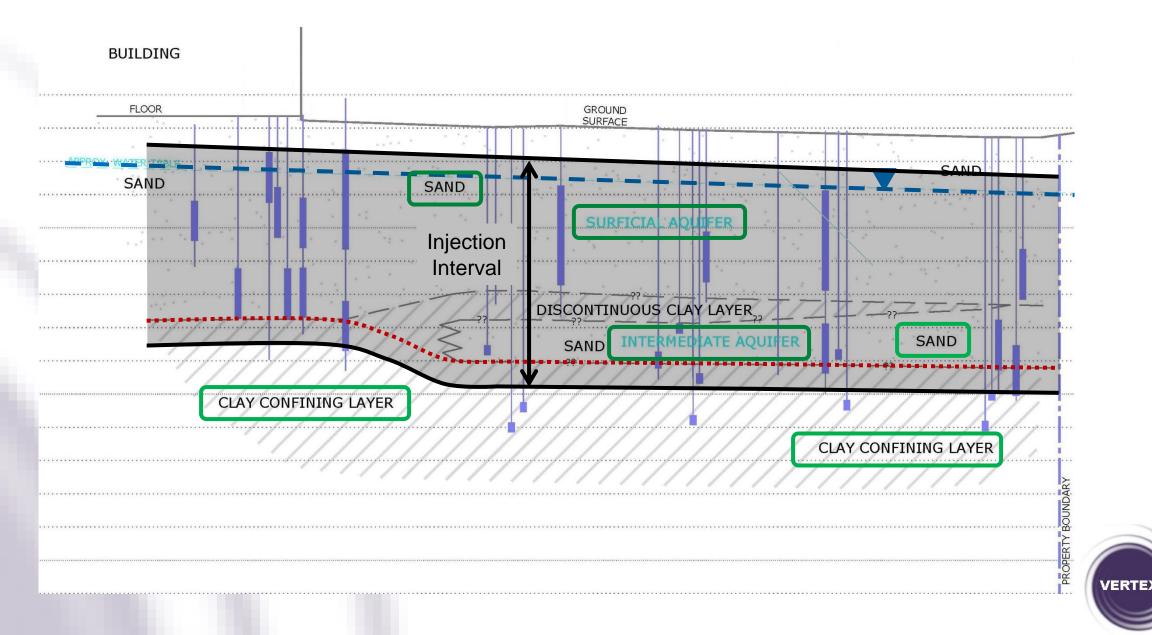
Remedial Objective

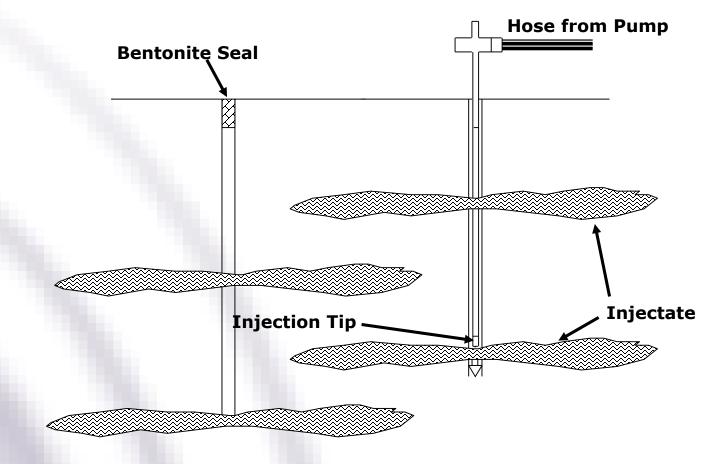
• **<u>Generic</u>** groundwater standards

Obstacles

- Minimize disruption to tenants (only one injection event; therefore must prevent "rebound")
- Old (leaky?) sewer easement passes through Site (non-mobile amendment needed)



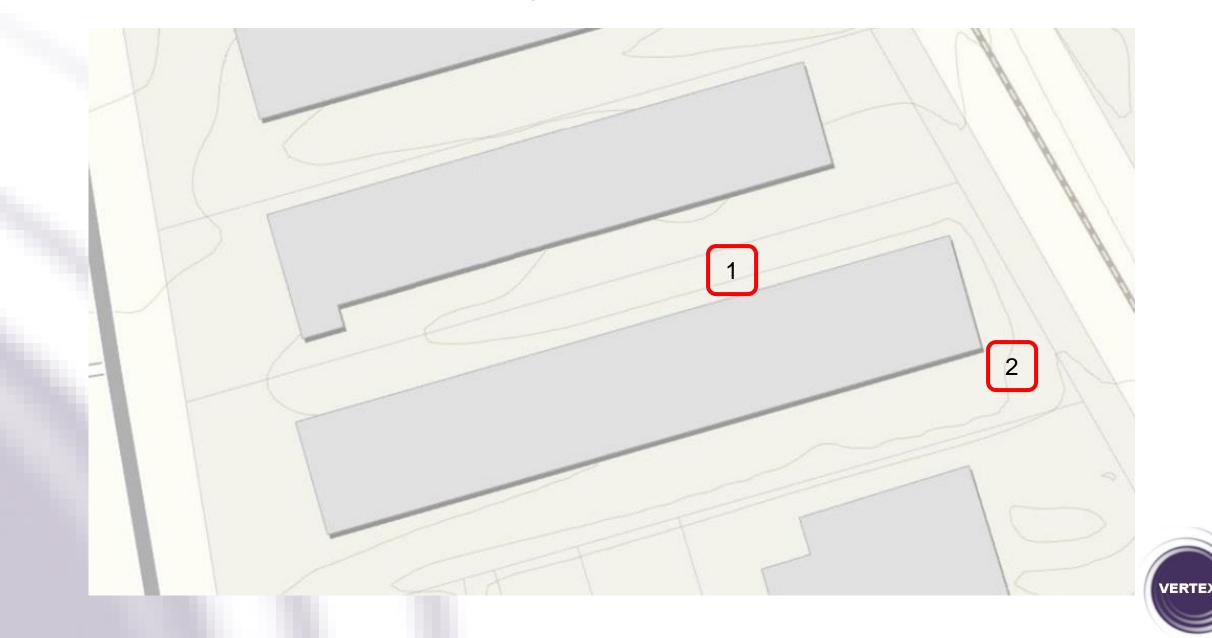


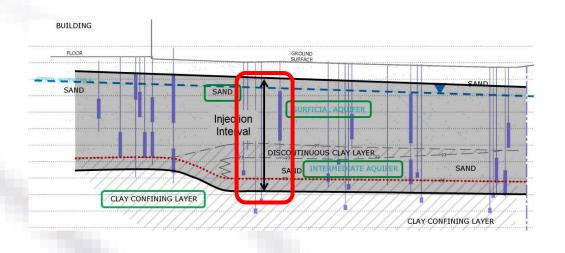

Remedial Approach

- BOS 100® injection program
 - Combined carbon adsorption and chemical reduction for cVOCs

Work Completed

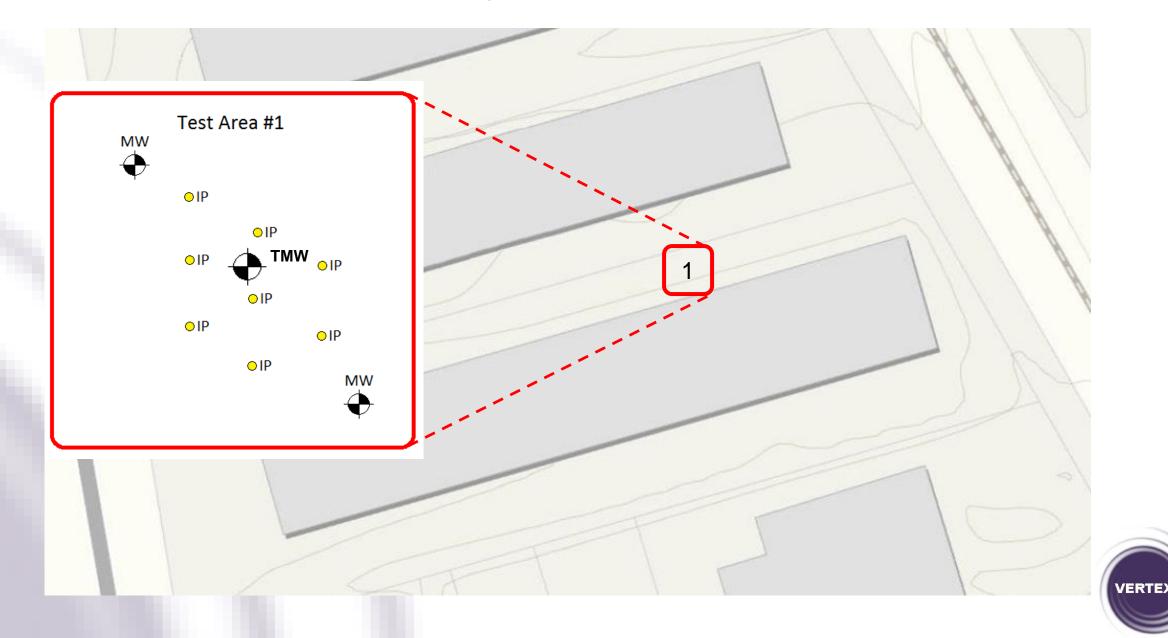
- Pilot-Scale Testing:
 - Injected ~450 kg of BOS 100®
 - ~5,000 L suspension
 - Seventeen (17) temporary injection points
 - Completed over 2 working days (1 day in each test plot)


• Direct Push Injection


- Trap and Treat ® BOS 100®
- Top-Down Approach

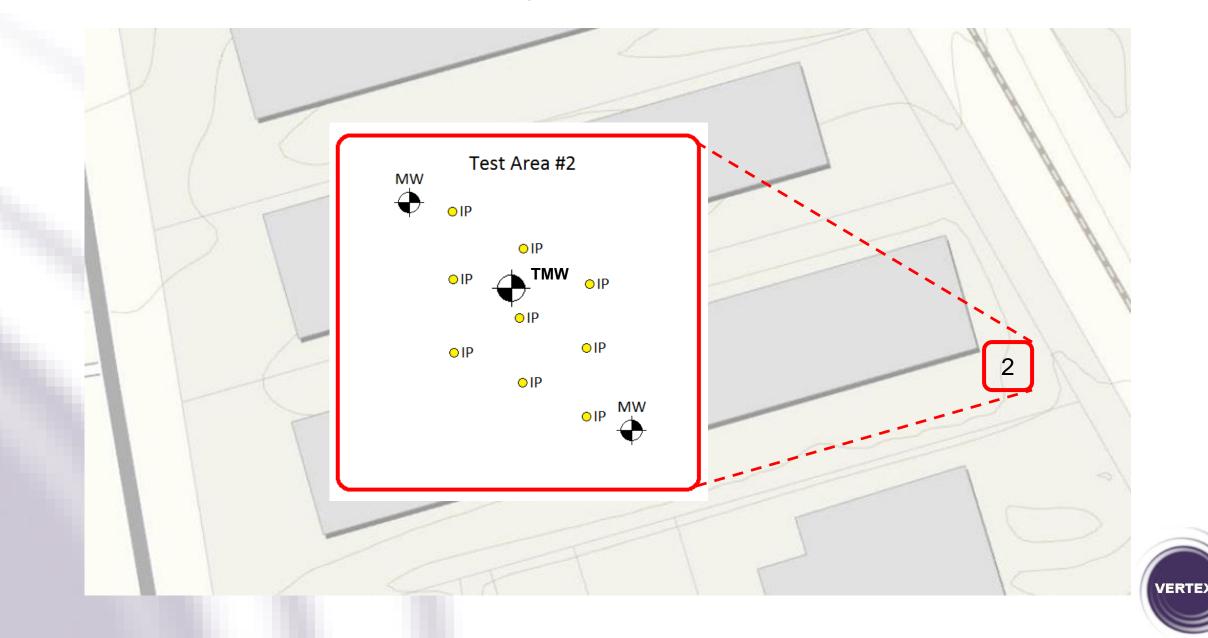
Injections using top-down approach

Source: AST Environmental



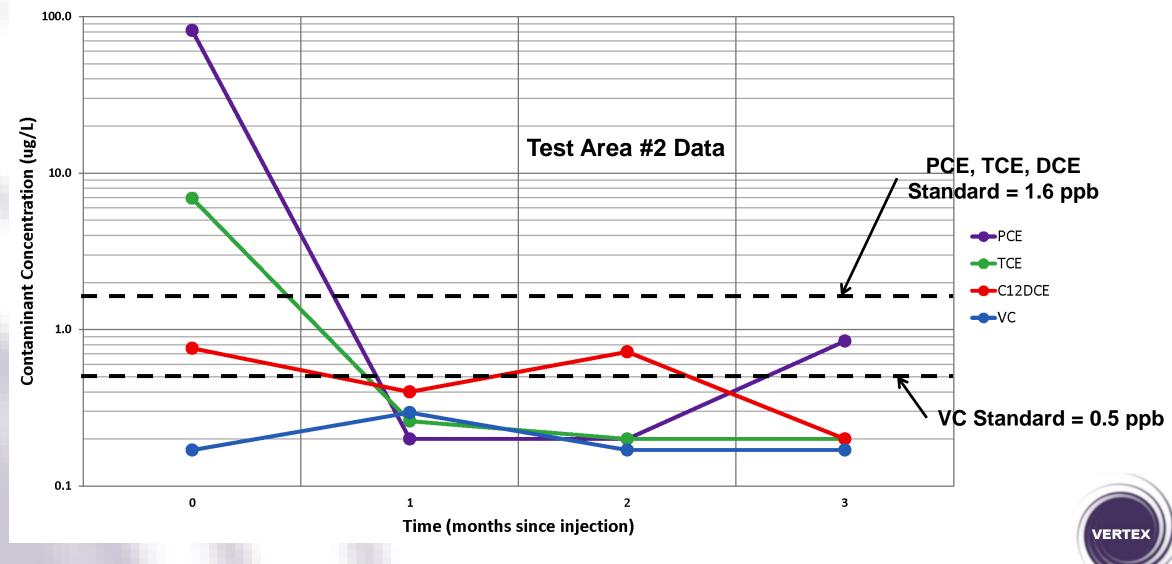
- Target injection interval originally identified as 1.5 to 6.7 mbgs
- Pilot-scale injection testing completed
- Boreholes advanced to collect forensic soil cores for QA/QC testing
- Evaluated BOS 100 distribution

Test Area	Test Hole	Target BOS 100 [®] Injection Range			Apparent BOS 100 [®] Presence Range			Percent Depth Coverage	
		Top (mbgs)	Base (mbgs)	Thick (m)	Top (mbgs)	Base (mbgs)	Thick (m)	%	Average %
1	1	1.5	6.7	5.2	1.2	4.1	2.9	56%	65%
	2	1.5	6.7	5.2	0.8	4.7	3.9	75%	
2	1	1.5	6.7	5.2	1.1	7.3	6.2	119%	102%
	2	1.5	6.7	5.2	2.3	6.7	4.4	85%	



Test Area #1

Parameter	Standard	Pre-Injection	Post-Injection (1 month)	Post-Injection (2 months)	Post-Injection (3 months)	
		MW Avg.	TMW Avg.	TMW Avg.	TMW Avg.	
PCE	1.6	21.3	16.0	12.0	16.4	
TCE	1.6	2.4	0.7	0.6	0.8	
C12DCE	1.6	2.9	<0.20	<0.20	<0.20	
VC	0.5	<0.17	<0.17	<0.17	<0.17	
Totals	(ug/L)	26.6	16.7	12.5	17.1	
Reductions	%	0.0%	37.1%	52.9%	35.6%	


Test Area #2

Standard	Pre-Injection	Post-Injection (1 month)	Post-Injection (2 months)	Post-Injection (3 months) TMW Avg.	
	MW Avg.	TMW Avg.	TMW Avg.		
1.6	81.5	<0.20	<0.20	0.8	
1.6	6.9	0.3	<0.20	<0.20	
1.6	0.8	0.4	0.7	<0.20	
0.5	<0.17	0.3	<0.17	<0.17	
(ug/L)	89.2	1.0	0.7	0.8	
%	0.0%	98.9%	99.2%	99.1%	
	1.6 1.6 1.6 0.5 (ug/L)	Standard MW Avg. 1.6 81.5 1.6 6.9 1.6 0.8 0.5 <0.17 (ug/L) 89.2	Standard Pre-Injection (1 month) MW Avg. TMW Avg. 1.6 81.5 <0.20 1.6 6.9 0.3 1.6 0.8 0.4 0.5 <0.17 0.3 (ug/L) 89.2 1.0	Standard Pre-Injection (1 month) (2 months) MW Avg. TMW Avg. TMW Avg. TMW Avg. 1.6 81.5 <0.20 <0.20 1.6 6.9 0.3 <0.20 1.6 0.8 0.4 0.7 0.5 <0.17 0.3 <0.17 (ug/L) 89.2 1.0 0.7	

Case Study #1: Neighbour to Former Dry Cleaner

Contaminant Concentrations vs Time

Case Study #1: Neighbour to Former Dry Cleaner

Full-Scale Remediation Plan:

- Physical isolation of Site from source property by impermeable barrier
- Trap & Treat® BOS 100® approach selected for sewer easement PRB and plume using RZs
- Design work completed to calculate theoretical loading rate
- <u>Pilot-scale testing, interim monitoring & forensic soil cores</u> <u>completed</u>
- Demonstrated feasibility of approach in Test Area #2
- Adjustments / refinements made to full-scale BOS 100® approach
- Tighter control over vertical distribution of injections
- Full-scale site remediation about to start

Case Study #2 Former Underground Storage Tank

Site Background

- Tenant occupied light industrial site for over 25 years
- Former diesel fuel UST for truck fleet removed and soil / groundwater remediated in 1998
- Lease expiring and tenant vacating property

Contaminant Situation

- PHC impacts in soil and groundwater (vs current standards)
- Soils a mixture of granular fill, clayey silt, silty clay, silty sand, silt, sand

Remedial Objective

- Complete remediation of site prior to lease expiry
- Allow for "four quarters clean" verification sampling (therefore prevent "rebound")
- Generic regulatory standards

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Monitoring Well	SAMPLE				
mBGS		mBGS		NUMBER	NTERVAL	REC (m)	N' VALUE	DID
-		0.30	Flush Mount Protective		$\overline{ }$		_	0.2
-	SW/GW - SAND AND GRAVEL; loose; medium grained; well graded; brown; moist; slight odour		Casing w/ Concrete			0.46		13.5
	SM - SILTY SAND; dense; fine grained; poorly graded; brown; moist; slight odour	1.22	Bentonite Chips					7.0
	SM - SILTY SAND; very dense; fine grained; poorly graded; brown; moist; slight odour	2.13	5cm PVC Riser			1.04		4.3
	ML/CL - SILT AND CLAY; very stiff; low plasticity; brown; moist; slight odour	2.29 2.44						
	CH - CLAY; with silt; soft; high plasticity; grey with dark staining; moist; strong odour		Sand Sand Scm Well Screen		$ - \downarrow$	1.19		65.0
	CH - CLAY; with silt; stiff; high plasticity; poorly graded; grey; wet; strong odour	3.66						51.7
- 	CH - CLAY; with silt; very stiff; high plasticity; poorly graded; grey; moist; slight odour		Image: Second			0.81		0.6
	END OF BOREHOLE @ 4.57m BGS	4.57				0.01		0.3
-5						1		

Mixed geology of sands, gravels, silts and clays

VERTEX

Locations	Date	Soil										
		Depth	В	Т	E	Х	F1	F2	F3	F4		
MW07-2	07/2007	2.71-3.05	<0.02	<0.02	0.31	0.34	21	330	170	<10		
		3.05-3.23	<0.02	<0.02	0.12	0.07	<10	220	89	<10		
BH3	11/2012	2.5-3.6	<0.02	<0.05	0.45	<0.05	61	800	350	<50		
BH4	11/2012	3.7-4.8	<0.02	<0.05	1.9	<0.05	72	530	160	<50		
MW01-16	10/2016	2.29-2.90	<0.0068	<0.08	0.040	<0.05	6.9	11 20	454	<50		
MW02-16	10/2016	3.66-4.27	<0.0068	<0.08	0.203	0.297	101	66	56	<50		
MOECC Standards (Table 3)		-	0.32	68	9 .5	26	55	230	1700	3300		

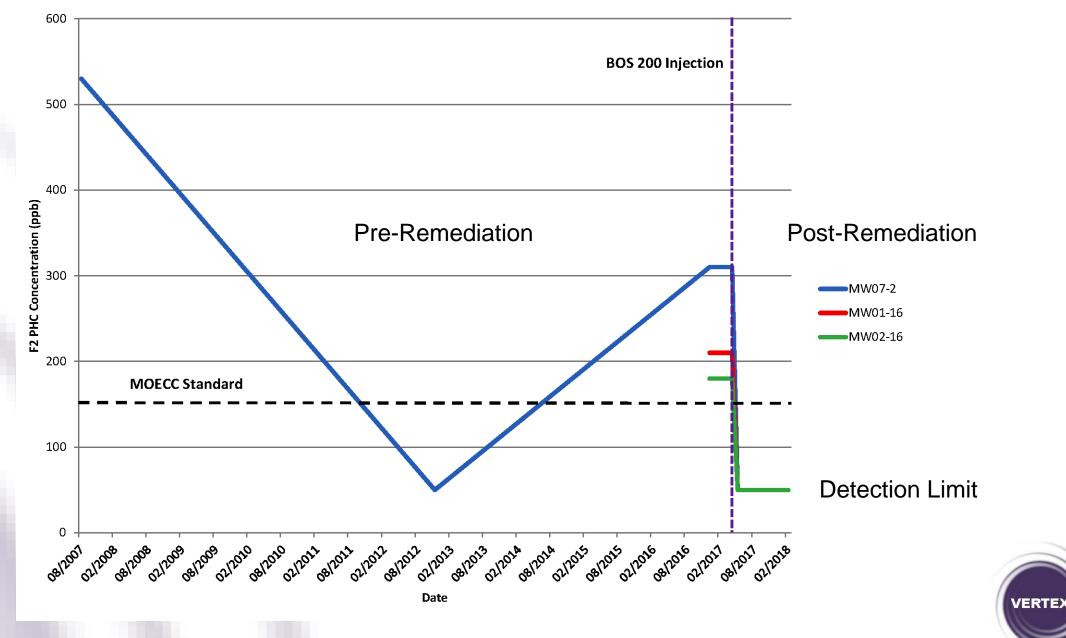
Locations	Date	Groundwater										
		В	Т	E	Х	F1	F2	F3	F4			
MW07-2	08/2007	83	4.5	90	51	550	530	<100	<100			
	11/2012	-	-	-	-	190	<100	<100	<100			
	12/2016	5.49	<0.50	2.20	2.90	98	310	<250	<250			
MW01-16	12/2016	1.39	<0.50	2.76	4.36	83	210	<250	<250			
MW02-16	12/2016	1.60	<0.50	3.33	5.71	97	180	<250	<250			
MOECC Stand	MOECC Standards (Table 3)		18000	2300	4200	750	150	500	500			

Remedial Approach

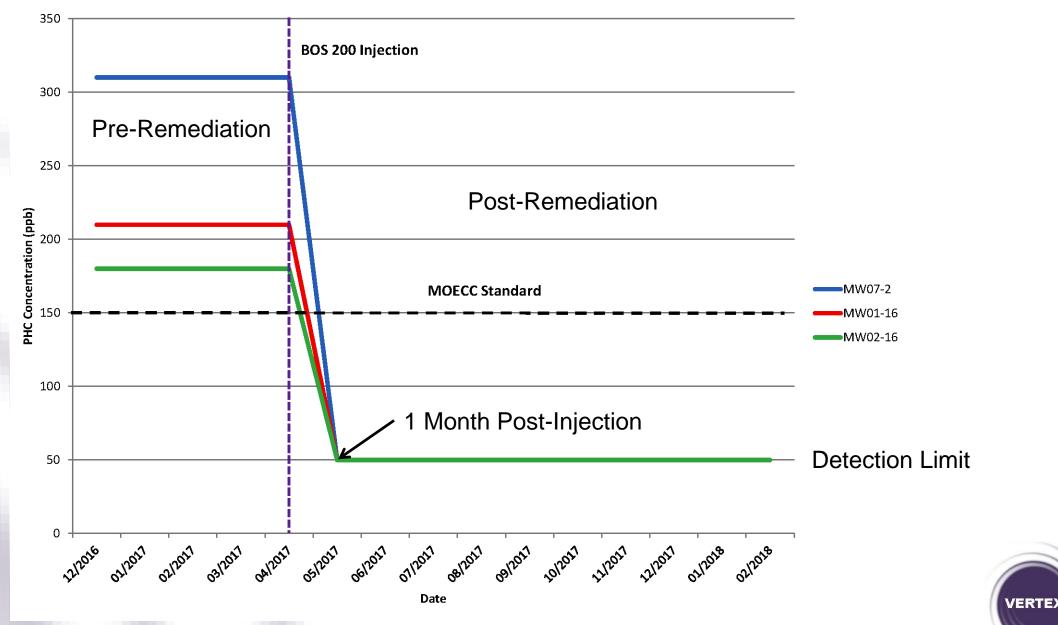
- Full-scale <u>BOS 200® injection</u> program
 - Combined carbon adsorption and anaerobic biodegradation for PHCs

Obstacles

- Excavation approach ("cut & fill") would require shoring & dewatering
- Relatively small work area with lots of truck traffic
- Limited disruption allowed = <u>no multiple injection events</u>
 - ISCO or bio alone would have required at least 2 to 3 injection events
- Client anxious to ensure site is remediated before end of lease
 - Therefore, certainty in approach was a priority


Work Completed

- Impacted area 100 m² by 2 m thick with soil and groundwater impacts
- 2,000 kg of BOS 200[®], 800 kg gypsum & microbes in 10,000 L of slurry injected
- Approx. 40 temporary injection points advanced via Geoprobe
 - 1.5 m lateral spacing for points
 - Vertical injection intervals from 2.1 to 4.5 mbgs
- Completed over 3 working days on-Site



Locations	Date	Groundwater								
		В	Т	E	X	F1	F2	F3	F4	
MW07-2	08/2007	83	4.5	90	51	550	530	<100	<100	Pre-injection ך
	11/2012	-	-	-	-	190	<100	<100	<100	groundwater
	12/2016	5.49	<0.50	2.20	2.90	98	310	<250	<250	
MW01-16	12/2016	1.39	<0.50	2.76	4.36	83	210	<250	<250	analytical
MW02-16	12/2016	1.60	<0.50	3.33	5.71	97	180	<250	<250	J data
N/A	04/2017				BOS 200® Inj	jection Event				
	05/2017	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	
MW07-2	08/2017	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	
101007-2	11/2017	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	
	02/2018	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	
	05/2017	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	Four rounds
MW01-16	08/2017	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	
1414401-10	11/2017	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	of post-
	02/2018	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	- remediation
	05/2017	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	
MW02-16	08/2017	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	groundwater
101002-10	11/2017	<0.50	<0.50	<0.50	<0.50	44	<100	<250	<250	_
	02/2018	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	analytical
MW03-17	05/2017	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	data
	08/2017	1.13	<0.50	<0.50	<0.50	<25	<100	<250	<250	
	11/2017	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	
	02/2018	<0.50	<0.50	<0.50	<0.50	<25	<100	<250	<250	
MOECC Stand	MOECC Standards (Table 3)		18000	2300	4200	750	150	500	500	VERTE

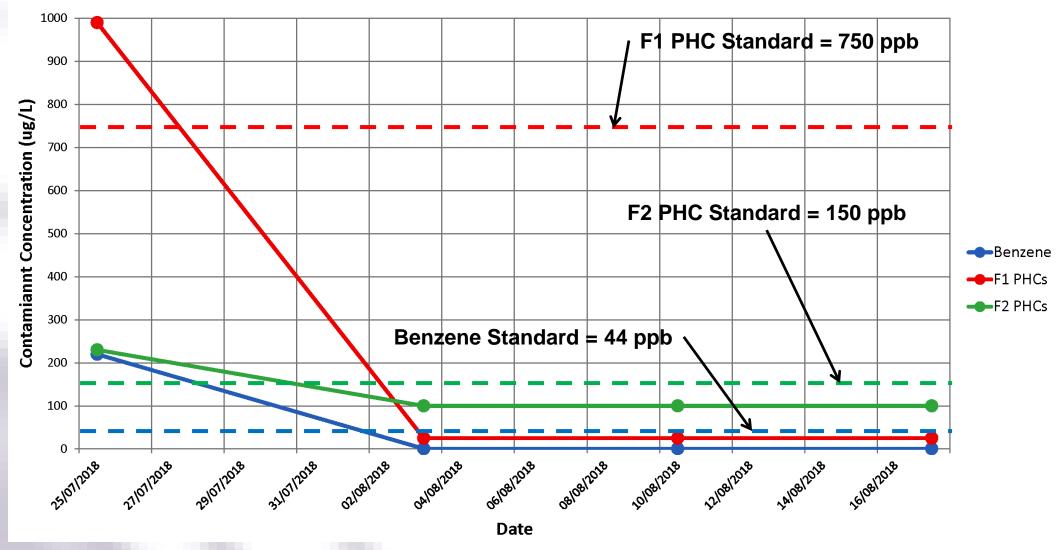
F2 PHCs in Groundwater (ppb)

F2 PHCs in Groundwater (ppb)

Project Summary:

- Client **required certainty** prior to end of lease
- Trap & Treat® BOS 200® approach selected
- Design work was essential
 - Calculation of carbon and sulphate demand
 - Designed lateral and vertical injection spacing to ensure uniform distribution in the subsurface
- Full-scale application completed as planned
- Remedial objective achieved <u>below Generic Standard</u>
- PHCs remain low (mostly ND) one year after injection event!

Case Study "Quickies"


"Quickie" Case Study #1 – Former On-Site RFO

Project Summary:

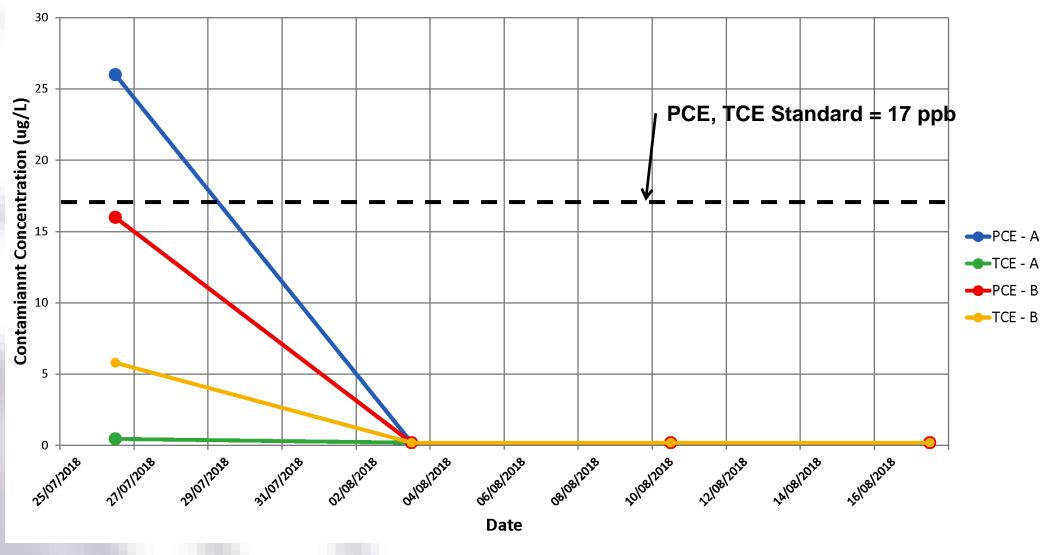
- Commercial property with former on-Site RFO from 1970s-1990s
- Excavation completed in May 2018 to remove PHC impacted soils
- Backfilled soils were sand and gravel fill
- Post-remediation groundwater quality failed at 1 of 3 MWs in backfill
- Trap & Treat® BOS 200® approach selected for fast and sustained remediation and to prevent "rebound"
- One day injection completed in July 2018
 - 216 kg BOS 200® plus microbial amendment
 - 1,800 L over six temporary injection points
- Remedial objective achieved <u>below Generic Standard</u>
- PHCs were all ND starting 9 days after injection event!

"Quickie" Case Study #1 – Former On-Site RFO

VERTE)

PHC Concentrations vs Time

"Quickie" Case Study #2 – Former On-Site Dry Cleaner


Project Summary:

- Commercial property with former on-Site dry cleaner from 1960s-1980s
- No cVOC impacted soils identified
- Soils were primarily fine grained silts and clays with sand interbeds
- Groundwater quality failed at 1 MW in vicinity of former dry cleaner and just barely passed in a second MW nearby
- Trap & Treat® BOS 100® approach selected for fast and sustained remediation and to prevent "rebound"

/ERTE

- One day injection completed in July 2018
 - 182 kg BOS 100®
 - 2,800 L over ten temporary injection points
- Remedial objective achieved <u>below Generic Standard</u>
- <u>cVOCs were all ND starting 8 days after injection event!</u>

"Quickie" Case Study #2 – Former On-Site Dry Cleaner

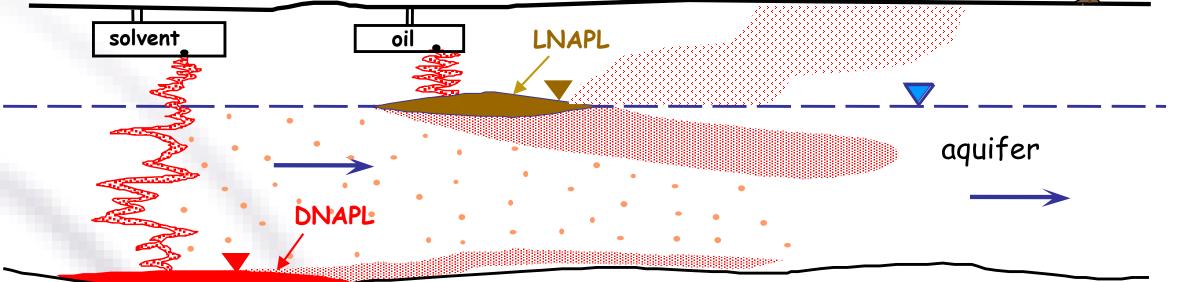
VERTE

cVOC Concentrations vs Time

Closing Thoughts

Keys to Remediating cVOCs and PHCs (or anything else for that matter)

- Adequately understand Site conditions (the "problem")
- Collect additional site characterization data, if needed
 - Traditional Phase II ESA work, and/or
 - High Resolution Site Characterization and 3D modelling
- Use bench-scale and/or pilot-scale testing
 - Proof-of-concept
 - Refine full-scale design based on actual Site conditions



Keys to Remediating cVOCs and PHCs (or anything else for that matter)

- Select the right remedial amendment and apply it properly
 - The right amounts in the right places to ensure contact
 - Use adsorptive technologies if "rebound" is a concern
- Monitor and re-evaluate as remediation progresses
 - Interim QA/QC (groundwater sampling, forensic soil cores)
 - Be flexible to adjust approach, if needed
- Use a qualified environmental remediation contractor!

aquitard

Questions?

Thank You for Your Time Kevin French, B.A.Sc., P.Eng. Vertex Environmental Inc. (519) 653-8444 ext. 303 office (519) 404-5442 mobile kevinf@vertexenvironmental.ca www.vertexenvironmental.ca

