

Sandra Dworatzek

siremlab . com

Outline

- Introduction
- BTEX degradation and bioremediation
- Aerobic vs anaerobic
- Benzene degrading culture DGG-1
- Biomarkers
- Biotreatability studies
- Conclusions and Future work

SiREM Core Service Areas

Remediation Testing

Characterization/Monitoring

Molecular Testing

Bioaugmentation Cultures

SiREM

KB-1

gene≬trac°

 Passive Samplers for Vapor and Pore Water

 Petroleum hydrocarbons of primary concern in groundwater are benzene, toluene, ethylbenzene and xylenes (BTEX)

BTEX comprises ~18% of gasoline

Ethylbenzene Xylene(s)

Benzene

- Potent carcinogen
- Particularly mobile in groundwater due to low sorption & high water solubility
- Most difficult BTEX compound to degrade anaerobically (unsubstituted ring structure)

Ethylbenzene Xylene(s)

Bioremediation Approaches

Category	Technology	Example Target Contaminants		
Aerobic	Oxygen Addition Nutrient Addition	Petroleum Hydrocarbons, Pesticides		
	Bioaugmentation	Petroleum Hydrocarbons, Pesticides		
Anaerobic	Electron Donor Addition	Chlorinated Solvents, Perchlorate, Oxidized Metals, Explosives, Nitrate		
	Bioaugmentation (KB-1 [®] / KB-1 [®] Plus/ DGG-1)	PCE, TCE, DCE, VC and 1,2-DCA Chlorinated ethanes and methanes: 1,1,1-TCA, carbon tetrachloride and chloroform; CFC-113 Benzene		
	Electron Acceptor Addition	Petroleum Hydrocarbons		
Cometabolic	Gas infusion, Bioaugmentation	1,4-Dioxane, NDMA, Chloroform, TCE, DCE, VC, MTBE, Creosote, >300 different compounds		
Abiotic	Natural Attenuation Reduced Metals	Chlorinated solvents, Oxidized metals,		

Anaerobic vs. Aerobic Respiration

Aerobic respiration

metabolic reactions and processes that take place in the cells of organisms that use oxygen as the terminal electron acceptor

Anaerobic respiration

metabolic reactions and processes that take place in the cells of organisms that use electron acceptors other than oxygen (e.g., sulfate, nitrate, iron, CO_2)

Overview of Microbial Metabolism

Aerobic BTEX Bioremediation

- Aerobic bioremediation approaches rely on availability or delivery of oxygen (e.g., peroxides, bioventing)
- When contamination is deep or under established reducing conditions, aerobic bioremediation can be difficult to establish and maintain
- Intrinsic microbial populations (e.g., *Pseudomonas*) are often capable of performing aerobic biodegradation
 - bioaugmentation not required

Aerobic Benzene Degradation

Aerobic Benzene Degradation - O₂ Required

•/

Anaerobic BTEX Biodegradation

- In-situ BTEX biodegradation is often slow or even undetectable;
 - Slow growth rates and low energy yields
 - Geochemical factors (e.g., co-contaminants, limiting electron acceptors, etc.)
 - Low abundance of intrinsic BTEX degraders (< 10²/L or kg)

Anaerobic BTEX Bioremediation (cont'd)

- Biodegradation of BTEX occurs under anaerobic conditions
 - Methanogenic
 - Nitrate reducing
 - Sulfate reducing
- Microbial populations may be present at low concentration but growth is slow
- TEX degraders more ubiquitous than benzene degraders
- Benzene is biggest challenge due to its unsubstituted ring structure = need for bioaugmentation

Anaerobic Benzene Degradation

Anaerobic Benzene Activation Mechanisms

Culture Development & Use forBioaugmentation

Anaerobic Benzene Degrading Cultures

ORM2

- Benzene specialist derived from an oil refinery site in 2003
- Deltaproteobacterium
- Slow growing ~ 30 day doubling time
- produces enzymes to ferment benzene

Siremlab.com

DGG-B Culture

- DGG-B successfully scaled up to commercial volumes
 - > Benzene degradation rate = 4.0 μ mol L⁻¹ day⁻¹
 - > 10⁸ ORM2 copies/L required for active degradation (doubles every 30 days)

Anaerobic Biotreatability Testing

 Anaerobic conditions maintained during set up, incubation and sampling in glove bags filled with N_{2,} CO₂ and H₂ gas mixture

Batch Treatability Study Design Features

Sterile Control

SiREM

Active Control

siremlab.com

Biostimulation

Bioaugmentation + Biostimulation

20

Treatability studies are custom designed for each site

Treatability Testing

BTEX-contaminated materials from 10 sites were assessed for their benzene bioremediation potential

- Intrinsic bioremediation
- Biostimulation (with nitrate or sulfate)

siremlab.com

DGG-B bioaugmentation

SiREM

Treatability Testing

Crushed core sample

SiREM

Groundwater sample

siremlab.com

200 mL groundwater slurries 50 mL headspace (10% CO₂ / 90% N₂)

*Aqueous BTEX concentrations ranged between 0.1 – 20 mg/L, depending on site

Treatability Test Results

Study #	Location	Successful Bioremediation Strategy			
		Intrinsic Bioremediation	Biostimulation	Bioaugmentation	
1	Nanjing, China	\checkmark		\checkmark	
2	New Jersey, USA				
3	Ontario, Canada		\checkmark	\checkmark	
4	Germany			\checkmark	
5	Saskatchewan, Canada	\checkmark		\checkmark	
6	Montana, USA				
7	Louisiana, USA	\checkmark		\checkmark	
8	Saskatchewan, Canada*	\checkmark		\checkmark	
9	Saskatchewan, Canada*	* = 5	Studies are ongoing	\checkmark	
10	Saskatchewan, Canada*				

Treatability Test Results (Site #3, ON)

Treatability Test Results (Site #3, ON)

- 16S rRNA gene sequencing confirms enrichment of other key microbes from DGG-B post-bioaugmentation
 - ORM2, *Methanosaeta*, and *Methanoregula* comprise 70% of total microbial community reads vs 0.2% (intrinsic bioremediation) by day 109

Treatability Test Results (Site #7, Louisiana)

Benzene degradation coupled to sulfate reduction
C6H6 + 3.75 SO42- + 3 H2O → 6HCO3- + 3.75 HS- + 2.25 H+

Lessons Learned

- Effective benzene degradation may requires treatment of TEX
- Other (unknown) factors can decrease degradation efficiency of DGG-B
 - e.g., Other petroleum hydrocarbons, salinity, metals

State of knowledge

Target pollutant	Culture developed	Key degraders & genes ID'ed?	Biomarkers developed?	Treatability tested?	Field tested?
Benzene	DGG-B	\checkmark	\checkmark	\checkmark	In progress
Denzene	NRBC	\checkmark	\checkmark		
Toluene	DGG-T	\checkmark	In progress		
o-Xylene	DGG-X	\checkmark	In progress		
Ethylbenzene	DGG-E	In progress			

DGG-T Activity

DGG-T Microbial Community

Future work

- Commercial pilot bioaugmentation testing
- On-going applied research
 - Complex sites PHC, Harsh conditions
 - Complex contaminants
 - New partners University of Alberta, University of Waterloo, Imperial Oil

Acknowledgements

- Jennifer Webb (SiREM)
- Kris Bradshaw (Federated Co-operatives Limited, Saskatchewan)
- Courtney Toth, Nancy Bawa, Shen Guo, and Elizabeth Edwards, (Department of Chemical Engineering and Applied Chemistry, University of Toronto

Thank you!

Further Information

2

Sandra Dworatzek (sdworatzek@siremlab.com)

siremlab.com 1-866-251-1747