

Developing the Insights Required for Informed-Decision-Making at Salt-Impacted Sites

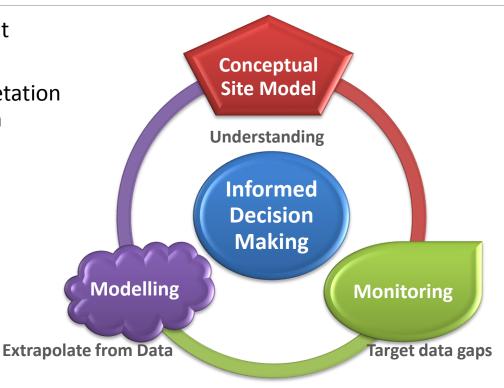
Presented by: Daron Abbey, Matrix Solutions.

Martinus Brouwers, Daron Abbey, Margaret Allan, Ian Ursu, Matrix Solutions Paul Martin, Aqua-Insight

October 12, 2018 - Salty Talks: REMTECH 2018: Banff, AB

Liability Landscape for Salt Impacted Sites

- All companies under pressure to improve operations, and find more costeffective solutions for remediation and to reduce liability
- Legacy salt sites are large and require more site-specific approaches
- Tier 1 Generic Remediation Guidelines result in large excavation volumes
- Tier 2 Modified Remediation Guidelines with SST can reduce volumes but has limitations
- Opportunity for more identifying more balanced remediation and management options:
 - Detailed Site-Specific Risk Assessment employing concepts of Sustainable Remediation supported by 3D numerical modelling

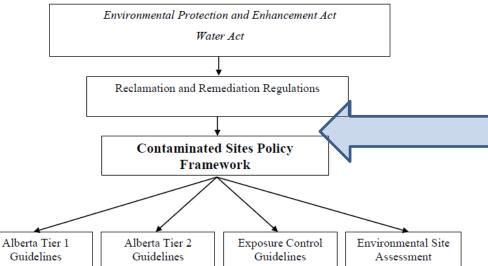

Tiered Approach to Risk Assessment

Matrix Solutions Inc.

Remediation, Risk Management, Closure **Uncertainty Conceptual Site Model (CSM)** Phase Tier 2c **Detailed Quantitative** aps omplexity Risk Assessment Supplemental I 2/ Data Gap Confidence/Reduced Unsaturated Tier 2a, 2b Zone **Preliminary** Quantitative Risk Saturated Assessment Groundwater Flor Tier 1 Screening Level Risk **Conceptual Site Model of Groundwater Flow** Assessment ncreased and Chloride Transport Phase 1 & 2 Site Assessment

Matrix View - Risk Assessment Process

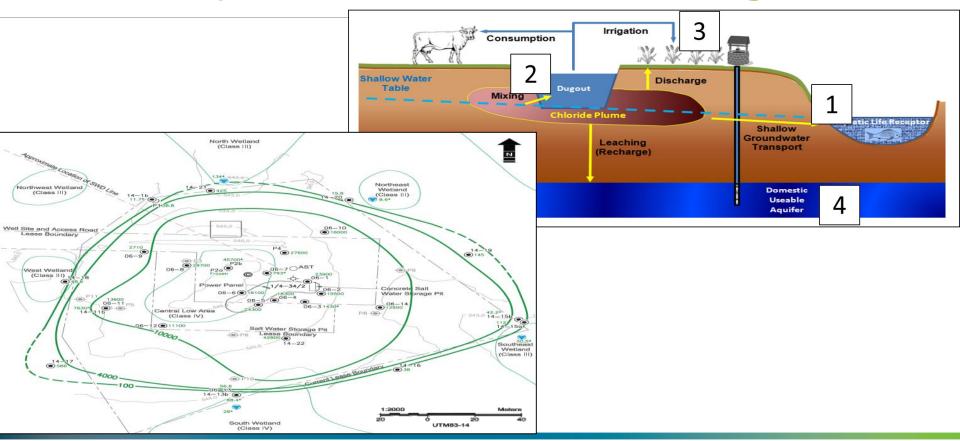
- Conceptual Site Model Development
 - Integrate multiple data sources
 - data management, interpretation visualization / interpolation
- Monitoring
 - Fill gaps in CSM
 - Targeted data collection
 - Static and temporal
- Modelling
 - Test CSMs
 - Extend beyond data
 - Remedial options evaluation



Balancing Environment, Social, Economic

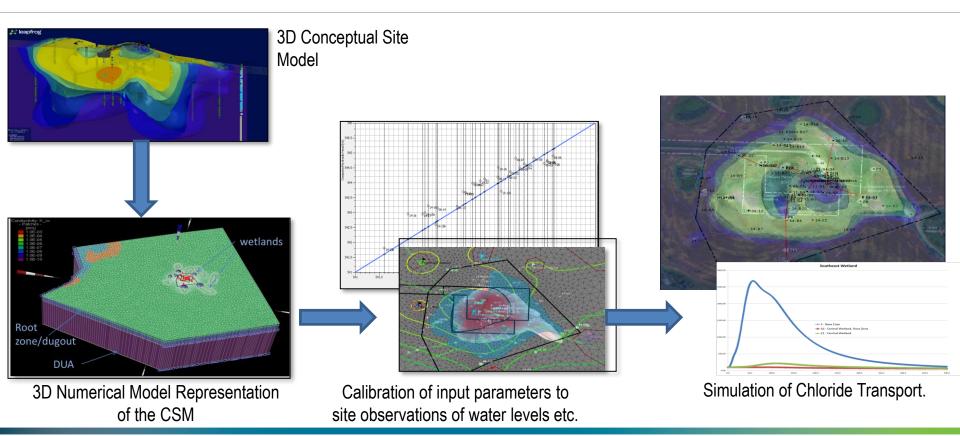
Alberta Contaminated Sites Policy Framework

Four Pillars: Protective. Effective. Efficient. Credible


Sustainable Remediation

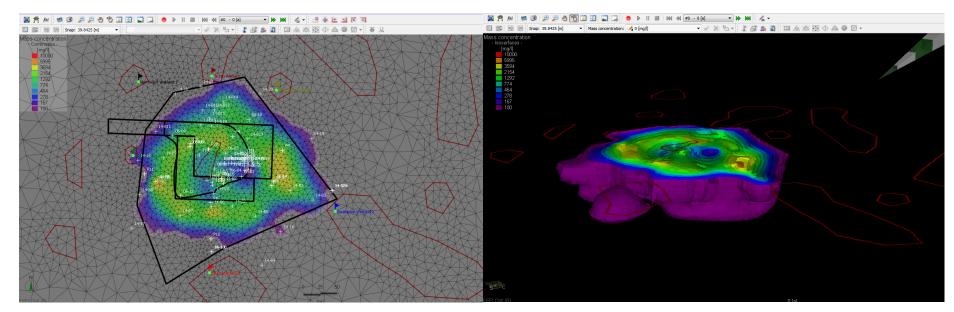
 Choose approaches that manage or eliminate the contamination risks but also maximize the overall environmental, social and economic benefits

Environmentally friendly practices and methods:

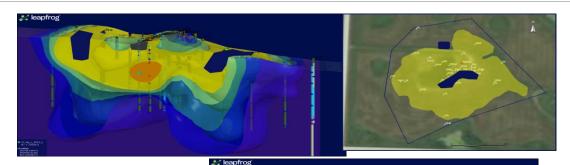

- Soil Excavation, In-situ Remediation Optimization, Groundwater Pump and Treat Optimization
 - Benefits of lower: project costs, energy consumption, emissions, material consumption, water use, waste generation, dust, noise, vehicle congestion
- Benefits of more: use of renewable energy, ecosystem and habitat protection, stakeholder involvement and confidence, use of local services / providers, local employment, use of on-site sampling and analytical techniques, use of more passive in-situ remediation / risk management options

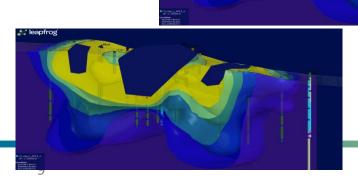
Case Study 1 - Former Saltwater Storage Area

Numerical Modelling for Risk Assessment



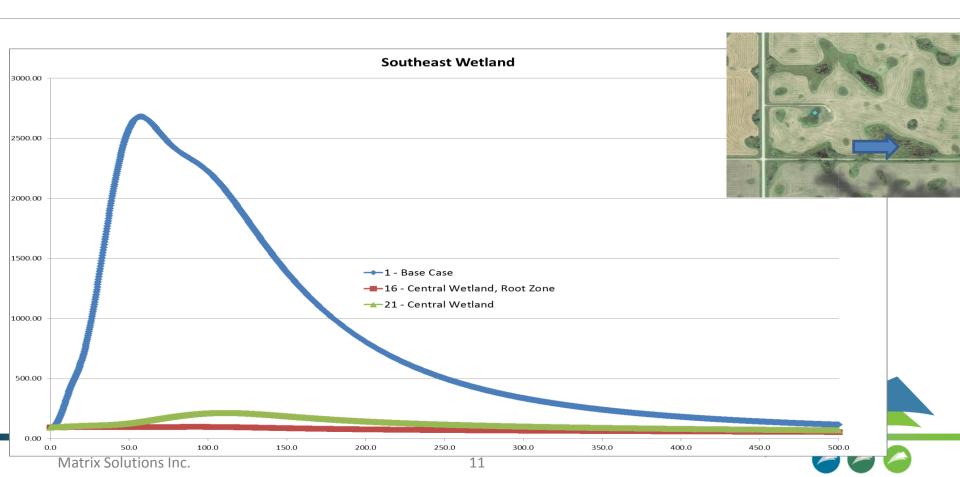
Scenario 1 - Base Case (100 year simulation)

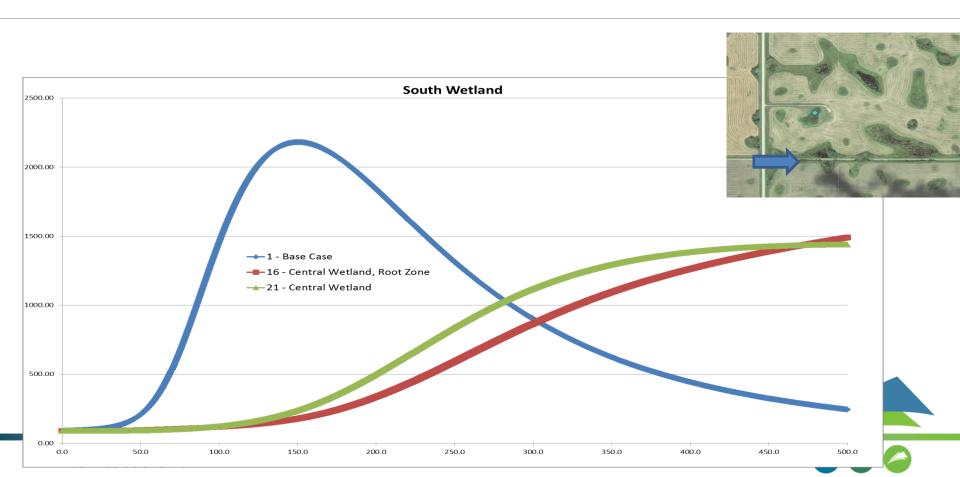

Plan View Chloride Concentrations over time


3D View Chloride Concentrations over time

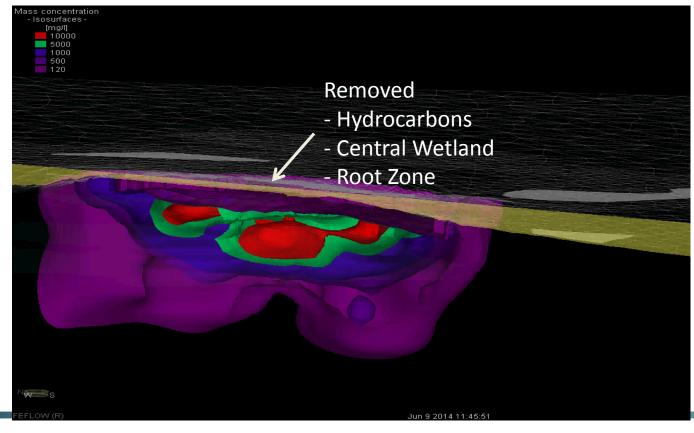
Remedial Options Considered

- Excavations
 - Hydrocarbon
 - Root Zone
 - Hot Spots
 - Toward SE Wetland
- Barriers
 - Flow to Wetland
 - Root Zone Diffusion
- Re-Grade Site
 - Central Wetland
- Pumping / Trench
 - Not tested
 - Time restrictive




Remedial Options Scenario Analysis

							— Е	xcavatio	n								-						
		_						Volume	_	_DL	JA_			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	we:	tlan	ias_						
			F	Remedial O	ptions			volullie					Res	sults - P	eak Co	ncentra	tion (m	g/L) an	d Time	(yr)			
	PHC	Root Zone	Hots	Spot	Toward	Remove	HDPE			Int Sa	nd Aq	Wet	B - SE	WetC-	- South	WetE-	- West	WetG	i - NW	Wetl -	North	WetJ	I - NE
SimId			Excavation	Backfill	SW Wetland	Central Wetland	Liner	Vol Excav (m3)	Max Depth (m)	Conc	Time	Conc	Time	Conc	Time	Conc	Time	Conc	Time	Conc	Time	Conc	Time
1										111	615	2680	57	2181	150	1283	207	752	431	1480	269	1706	235
2	\checkmark			Clean				3,338	3.0	109	500	2680	57	2180	150	1283	207	752	431	1456	270	1705	235
3	\checkmark	√ _(1.7m)						64,758	2.3	104	500	1853	94	1350	169	974	221	621	442	1220	277	1124	254
4	✓	√ _(1.7m)	√(10000 mg/l)	Native				81,753	6.0	100	500	1574	74	930	172	834	200	305	447	494	263	787	251
5	✓	√ _(1.7m)	√(10000 mg/l)	Clean				103,982	6.0	94	500	1556	70	448	113	696	170	189	379	262	86	465	168
6	✓	√ _(1.7m)	√(10000 mg/l)	Clean	√ _(6m)			198,312	6.0	94	500	636	85	448	113	94	0	170	369	90	339	425	174
7	✓	√ _(1.7m)	√ (5000 mg/l)	Clean				121,238	6.0	93	500	574	10	324	106	360	127	134	360	262	86	373	157
11	✓	√ _(5m)						272,158		92	500	170	138	111	215	127	280	101	494	151	337	95	316
14	✓	√ _(1.7m)				✓				97	500	307	130	1457	445	206	0	90	0	137	0	90	0
15	✓	√ _(1.7m)				✓	✓			95	500	175	56	1610	500	206	0	90	0	137	0	90	0
\Rightarrow	✓	√ (1.5m)				✓	✓	54,752	3.0	96	500	98	92	1491	500	206	0	90	0	137	0	90	0
17	✓	√ _(1.5m)	√(10000 mg/l)			✓	✓	76,263	5.5	95	500	98	92	846	500	206	0	90	0	137	0	90	0
21	✓					✓		3,338	3.0	100	500	212	111	1440	500	206	0	90	0	137	0	90	0
22	✓					✓		3,338	3.0	99	500	190	180	1709	389	206	0	90	0	137	0	90	0
<u> </u>	IVIati	ix Solutio	OHS HIC.			,	•	-	IU														

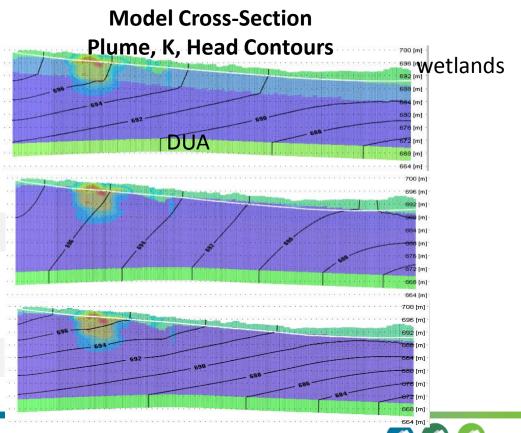

Predictions - SE Wetland

Predictions - South Wetland

Preferred Option - 16

Balancing Environment, Social, Economic

- Balancing cost, protection of receptors and stakeholder needs
- Engaging Stakeholders in Collaborative discussion around site management
- Weighing the effectiveness of remediating central wetland, and loss of the wetland, compared to the benefit to the other wetlands
- Undertaking biological assessment of wetland to identify site-specific objectives
- Weighing long time period to peak concentrations at wetlands against impacts associated with a deeper and larger excavation
- Weighing roots zone excavation which does not provide much benefit for wetland but requires 20 times more excavation
- Uncertainty analysis provides confidence in the model simulations
 - Tells us what are key pieces (e.g. vertical gradient)
 - Provides transparency and confidence in the CSM


Data Gaps - Uncertainty Analysis

Conceptual Model

Baseline / Moderate Vertical Gradient

Uncertainty 1 / Lower Vertical Gradient

Uncertainty 2 / Greater Vertical Gradient

Case Study Example - Uncertainty Analysis

Scenario			Receptor	Guideline	Base Case:	Uncertainty Case 1:	Uncertainty Case 2:	
				(mg/)	Moderate Downward	Weaker Downward	Stronger Downward	
					Vertical Gradient	Vertical Gradient	Vertical Gradient	
1) No Further Remediation	Cost		Potential DUA	250	165 mg/L at 292 yr	75 mg/L at 944 yr	330 mg/L at 407 yr	
	Vol.		Wetland C	120	97 mg/L at 200 yr	321 mg/L at 500 yr	42 mg/L	
	Mass		Wetland D	120	42 mg/L (background)	130 mg/L at 850 yr	42 mg/L	
2) Excavate CI > 2400 mg/L to 2 m bgs	Cost	\$930,000	Potential DUA	250	129 mg/L at 290 yr	66 mg/L at 942 yr	239 mg/L at 405 yr	
	Vol.	7,800 m ³	Wetland C	120	66 mg/L at 200 yr	233 mg/L at 450 yr	42 mg/L (background)	
	Mass	10.1 tn	Wetland D	120	42 mg/L (background)	97 mg/L at 800 yr	42 mg/L (background)	
3) Excavate CI > 2400 mg/L to 2 m bgs	Cost	\$1,450,000	Potential DUA	250	93 mg/L at 280 yr	56 mg/L at 876 yr	153 mg/L at 377 yr	
+ Excavate All Cl > 10,000 mg/L	Vol.	12,100 m ³	Wetland C	120	42 mg/L (background)	119 mg/L at 500 yr	42 mg/L (background)	
	Mass	18.1 tn	Wetland D	120	42 mg/L (background)	86 mg/L at 850 yr	42 mg/L (background)	
4) Excavate CI > 2400 mg/L to 4 m bgs	Cost	\$1,994,000	Potential DUA	250	82 mg/L at 252 yr	53 mg/L at 844 γr	132 mg/L at 343 yr	
+ Excavate All Cl > 10,000 mg/L	Vol.	16,600 m ³	Wetland C	120	42 mg/L (background)	82 mg/L at 549 γr	42 mg/L (background)	
	Mass	20.4 tn	Wetland D	120	42 mg/L (background)	44 mg/L at 850 yr	42 mg/L (background)	

Summary Points

- Risk Management Framework supported by site-specific numerical modelling and concepts of sustainable remediation enable
 - Cost-benefit analysis of alternative management plans
 - Uncertainty Analysis to provide context dialogue with decision makers
 - Additional assessment options, e.g. wetland assessment
- Numerical model provides insight to balance environment, social, economic factors
- Dialogue with stakeholders
- Trade-offs need to be presented to enable holistic approach

