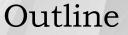
Schulich School of Engineering

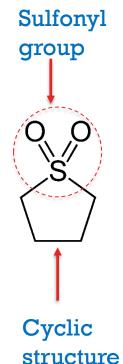
Biodegradation of Sulfolane in Soil Using Aerobic Biopile Technology


Successful Collaboration Between Academia and Industry – Breaking Open Sulfolane Remediation strategies

12-Oct-2017

Linlong Yu, University of Calgary

Ian Keir, Bonavista Energy Corporation


- Sulfolane Key Properties
- Environmental Standards
- Previous Sulfolane Presentations
- Development of Sulfolane Treatment Technology
- Aerobic Biodegradation of Sulfolane in Soil
- Lab Degradation of Sulfolane
- Pilot Demonstration-Biopiles
- Full Remediation on Sulfolane Contaminated soil

Sulfolane Key Properties

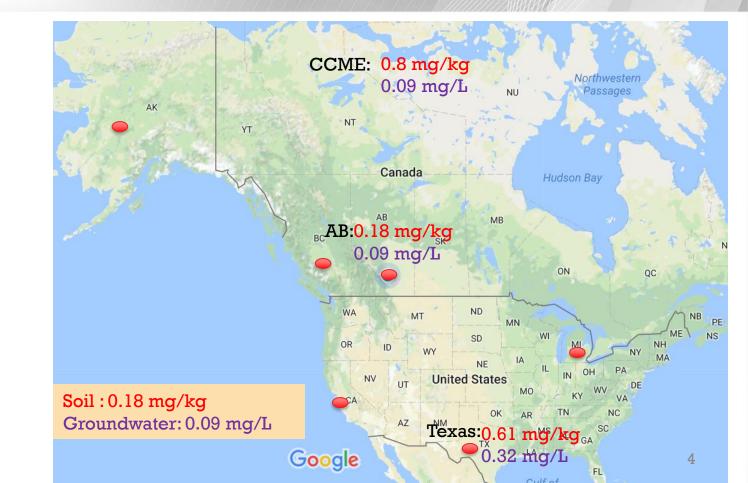
- Gas Sweetening
- Aromatics Extraction
- Textiles
- Production 18,000-36,000 tones^[1]
- Soil and Groundwater contamination
- Ongoing Toxicity Studies (NTP)

- □ Chemically stable
- Thermally stable
- Boiling Point: 287.3 °C^[2]
- □ Vapor Pressure@20°C : 1.33 pa^[3]
- □ Water Solubility@20°C: 1266 g/L^[3]
- **Soil Adsorption:**
 - $K_{oc} = 0.07^{[3]}$
 - K_d(montmorillonite)=0.94L/kg^[4]
 - K_d(kaolinite)=0.08 L/kg ^[4]

Environmental Standards

■BC

Alaska


Texas

Louisiana

California

Michigan

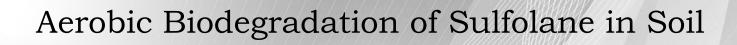
Health Canada interim drinking water guideline: 0.04mg/L.

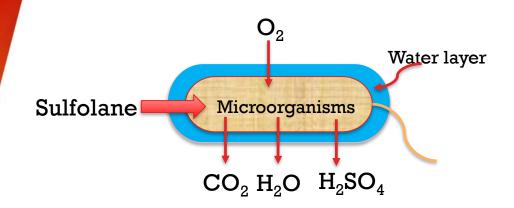
Previous Sulfolane Presentations

– EBA 2005 – Lab Scale

UNIVERSITY OF

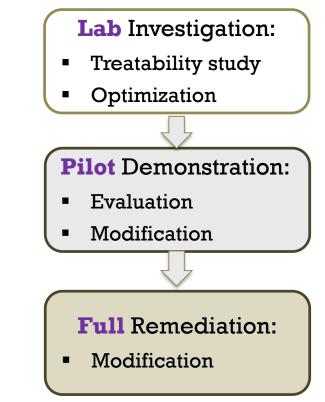
- Soil: Bio-treatability
- Groundwater: Bio-treatability; Chemical Oxidation
- Biogenie 2006 Full Scale
 - Soil: Bio-treatability
- WorleyParsons Komex 2008 Pilot and Full Scale
 - Groundwater: Bio-treatability
- Waterline 2016 Pilot Scale
 - Soil: Bio-treatability; Chemical Oxidation
- Trium 2016 Lab Scale
 - Groundwater: Chemical Oxidation
- Maxxam 2017 Lab Scale
 - Laboratory Methods
- WorleyParsons 2017
 - Groundwater Remedial Options Review



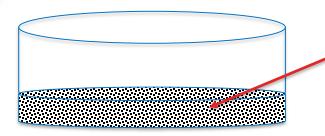


Development of Sulfolane Treatment Technologies UNIVERSITY OF

Groundwater	Soil
 Advanced Oxidation – Lab and 	 Bioremediation – Lab Scale, Field
Field Pilot	Pilot, Full Scale
 Bioremediation – Lab and Field 	 Soil Flushing & Washing – Lab Scale
Pilot	and Field Pilot
 Carbon Adsorption – Lab and Field 	 In-Situ Chemical Oxidation (ISCO) –
Pilot	Lab Scale
 Reverse Osmosis – Lab Scale 	 Oxygen Releasing Compounds
 Isotope Fractionation – Lab Scale 	(ORC) – Lab Scale and Field Pilot
 Integrated Technology-Lab scale 	



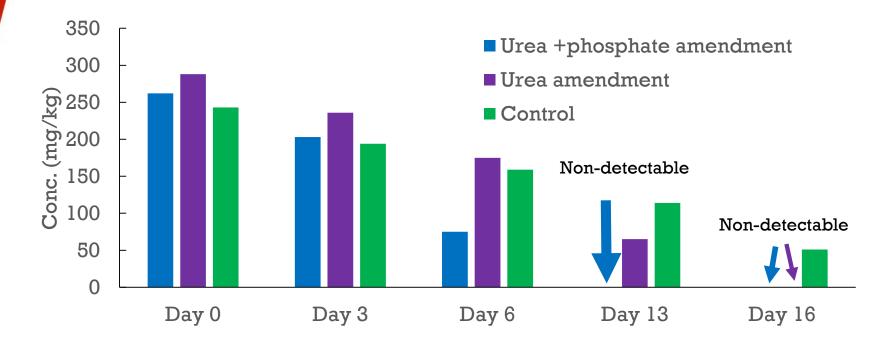
- N, P & micronutrients
- Proper pH


UNIVERSITY OF

Proper temperature

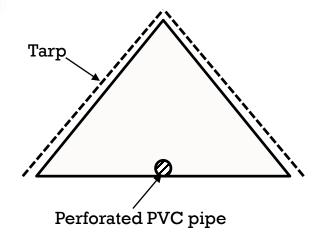
Sulfolane+6.5 $O_2 \rightarrow 4CO_2 + 3H_2O + H_2SO_4$

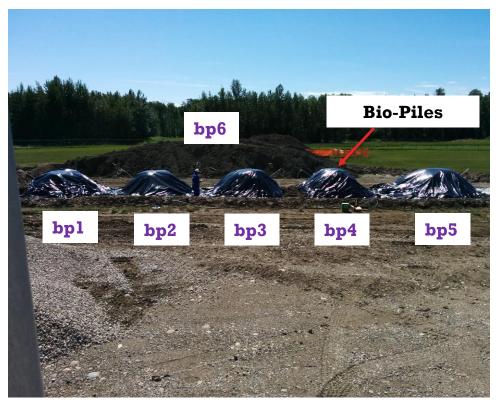
300 g of soil was loosely packed in a beaker (**ø= 15 cm**)


• Moisture :	18%
--------------	-----

- Oxygen: exposed to atmosphere
- Temperature: 22 °C
- Nutrients : different conditions

Soil Texture			
Physical properties	Value		
Sand percentage	8.3		
Silt percentage	43.0		
Clay percentage	48.6		
Texture	Silty Clay		

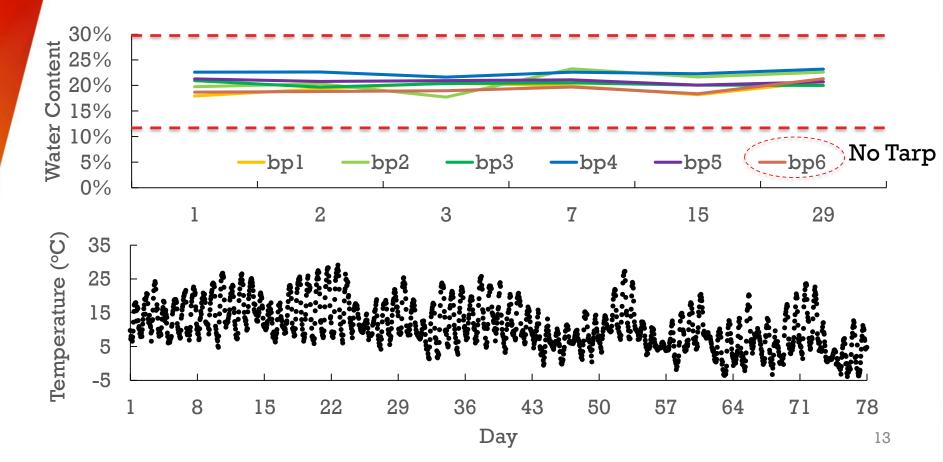

Lab Study: Different Lab Conditions


- Sulfolane metabolized microorganisms were present in the contaminated soil.
- N-P amendment samples yield the best degradation results.

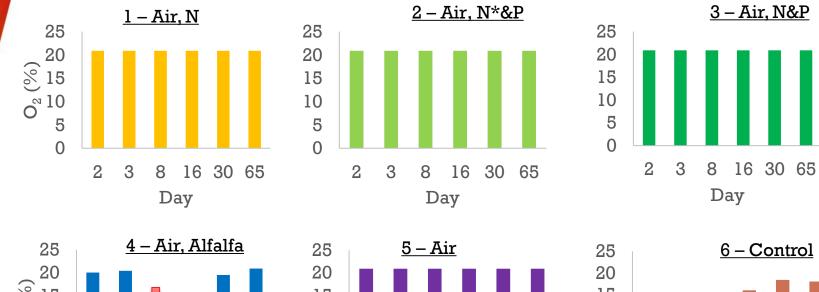
Pilot Study: Setup of Soil Bio-Piles

Soil	Size of	Covered	Nutrient Amendment			
pile	pile (m ³) with Tarps		Nitrogen nutrient	Phosphate nutrient	Alfalfa green	Aeration
bp l	25	Yes	Yes	NO	NO	Yes
bp 2	25	Yes	Yes*	Yes	NO	Yes
bp 3	25	Yes	Yes	Yes	NO	Yes
bp 4	25	Yes	NO	NO	Yes	Yes
bp 5	50	Yes	NO	NO	NO	Yes
bp 6	500	No	NO	NO	NO	NO

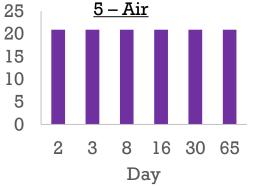
* The amount of nitrogen added in bp 2 was only 1/10 of that in bp1

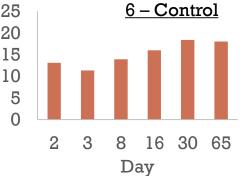

Sample Collection and Analysis

- Six random samples were collected from each soil pile
- CO₂, O₂ and water moisture content were monitored.
- Temperature data was obtained from Alberta Climate Information service



Water Content & Temperature





Oxygen

14

0.20

0.15

0.10

0.05

0.00

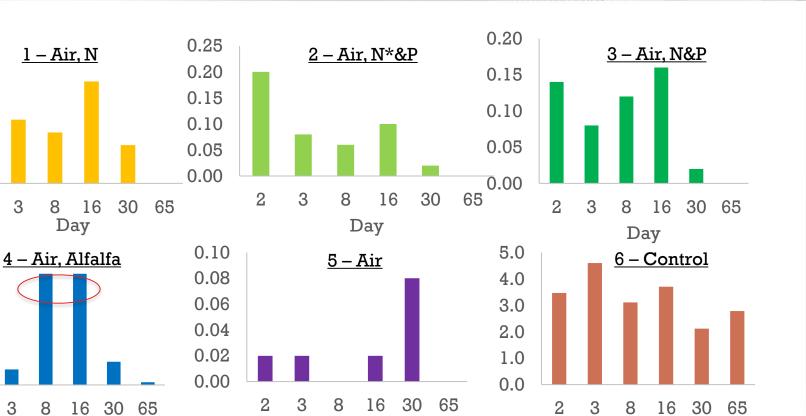
6.0

5.0

4.0

3.0

2.0

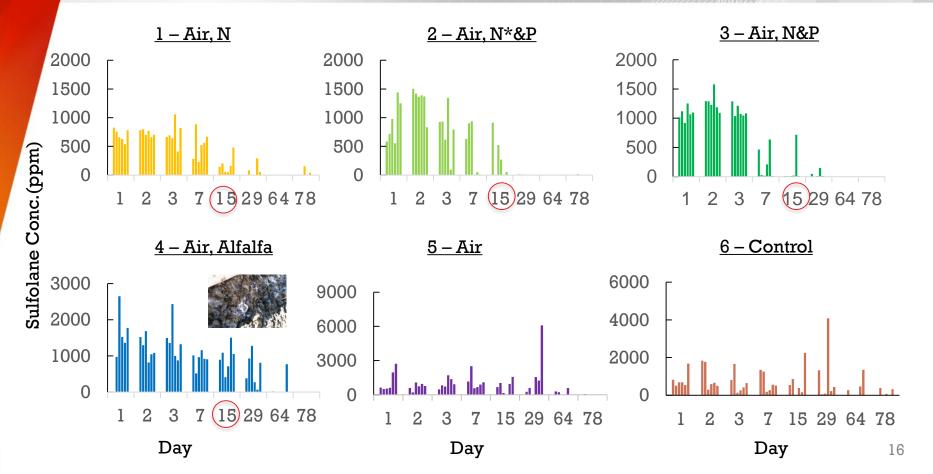

1.0

0.0

2

2

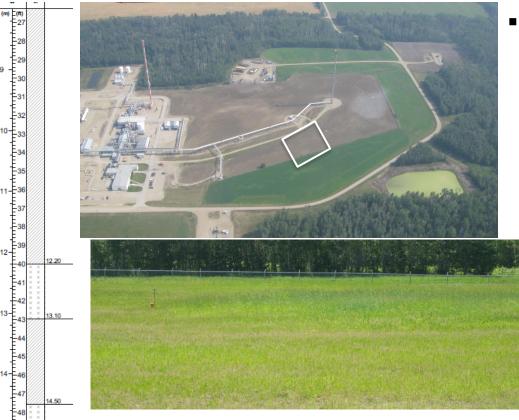
CO2 percentage


Day

Day

 CO_2

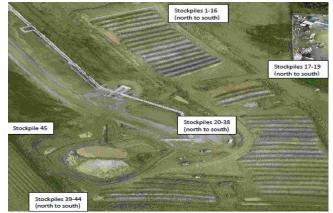
Treatment Comparison


Soil Piles		BP1	BP2	BP3	BP4	BP5	BP6
		<u>Air, N</u>	<u>Air,</u> <u>N*&P</u>	<u>Air,</u> <u>N&P</u>	<u>Air,</u> <u>Alfalfa</u>	<u>Air</u>	<u>Control</u>
First Order Kinetics	K (Day ⁻¹)	0.09	0.09	0.17	0.03	NA	NA
	Half life (Day)	5.3	5.4	3.0	17.9	NA	NA
Zero Order Kinetics	Rate (mg/kg/Day)	24	26	42	17	NA	NA

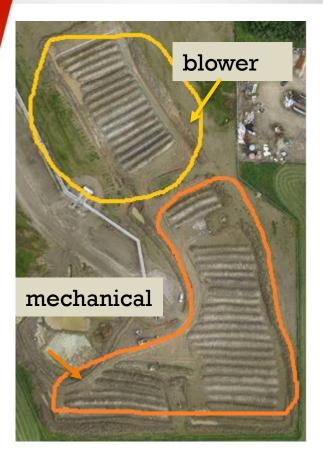
The highest zero order degradation rate observed in lab was 220 mg/kg/day.

UNIVERSITY OF

- Former Flare Pit
 - Sulfolane, DIPA, PHCs
 - Soil Texture
 - 23% Sand
 - 40% Silt
 - 37% Clay
 - Sulfolane [0.42 8170 mg/kg]
 - Average 364 mg/kg
 - Impacts 2–9 mbgs



- ~8000 m³ soil placed in windrows
 - volume assessed with drone
- Per m³ of soil: 0.1 kg MAP and 0.29 kg urea
 - based on TOC and 100:5:1- C:N:P
- Oxygen
 - blower aeration
 - mechanical aeration



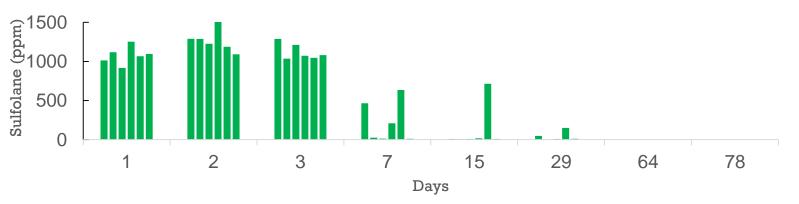
Blower Aeration – Year 1

22

- Mechanical aeration
 - July and August
- Blower aeration

- 24/7

- Based on half-life from pilot: ~35 days to clean soil with 346 mg/kg of sulfolane.
- 81 days between excavation and confirmatory samples
- 2 of 44 windrows exceeded sulfolane guideline



Ongoing Remediation

- Aerobic biodegradation of sulfolane was observed both in the lab and in the field.
- The addition of nutrients and forcing aeration enhanced sulfolane degradation (Pilot).
- Supplemented with both "N" and "P" nutrient resulted the best sulfolane degradation rate, the half-life is 3 days (optimal pilot conditions)
- Mechanical and forced aeration were both successful in full scale

[1] CCME. 2006. Canadian Environmental Quality Guidelines for Sulfolane:Water and Soil.

[2] Kirk-Othmer. 1999. Encyclopedia of Chemical Technology. Fourth Edition, 1999. John Wiley & Sons.

[3] Shell Chemicals Europe Limited. 1994. Sulfolane Data Sheet, Shell Chemicals UK Ltd.

[4] Luther, S.M., Dudas, M.J. and Fedorak, P.M. 1998. Sorption of sulfolane and diisopropanolamine by soils, clays and aquifer materials. *Journal of contaminant hydrology*, *32*(1), pp.159-176.

- Linlong Yu, University of Calgary
- Ian Keir, Bonavista Energy Corporation
- Gopal Achari, University of Calgary
- Art Giurici, Terex Environmental Group
- Collin Hennel, Bonavista Energy Corporation

Thank you!

Questions?