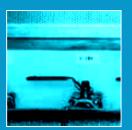


SOLUTION PROVIDED

Solar based heat enhanced remediation

Solution Provider in Environmental Asset Management

Leading in soil and groundwater remediation



ISSUE

Industrial site, chlorinated contamination in clay to 9 m below grade

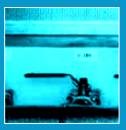
- Contamination underneath industrial premisses
- Shut-down not acceptible (major disruption of production)
- Excavation impossible (too deep, too much on top)

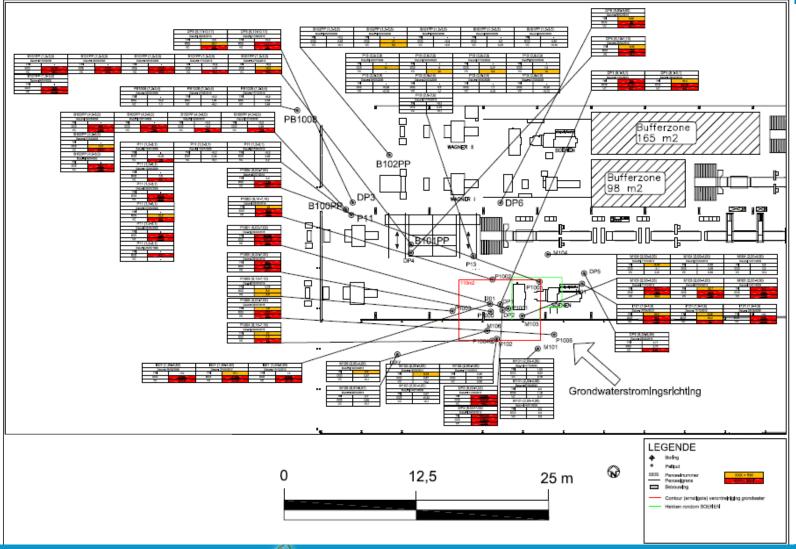
ISSUE (2)

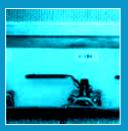
- Chlornated hydrocarbons DNAPL, at and in the top of a clay layer
- Permeability too low for regular treatment

Compound	Max Concentration	Remediation Goal
Compound	(µg/l)	(μg/l)
Trichloroethene	1.900.000	3.000
Dichloroethene	340.000	8.400
Vinylchloride	12.700	36

Site




ISSUE (3)



SOLUTION

Heat soil gradually to 30 – 50 C

Heat will increase reaction speed 4fold

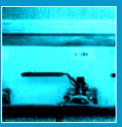
Heat will increase permeability of clay 2 – 5 fold

High-vacuum extraction will be effective to remove bulk of contamination

In situ chemical reduction and biodegradation will treat the rest



Options to heat soil

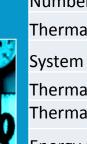

- Electrical (resistivity) Heating
- Hot Air injection
- Steam injection
- Conductive Heating
 - Electrical
 - Hydraulical

Option selected

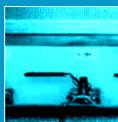
Hydraulic conductive heating with high vacuum extraction

- Solar system to provide most of energy for heating; gas fired heater as back-up
- High-vacuum, extraction system to remove contamination
- Carbon for treatment of effluent

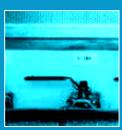
Energy calculations steam

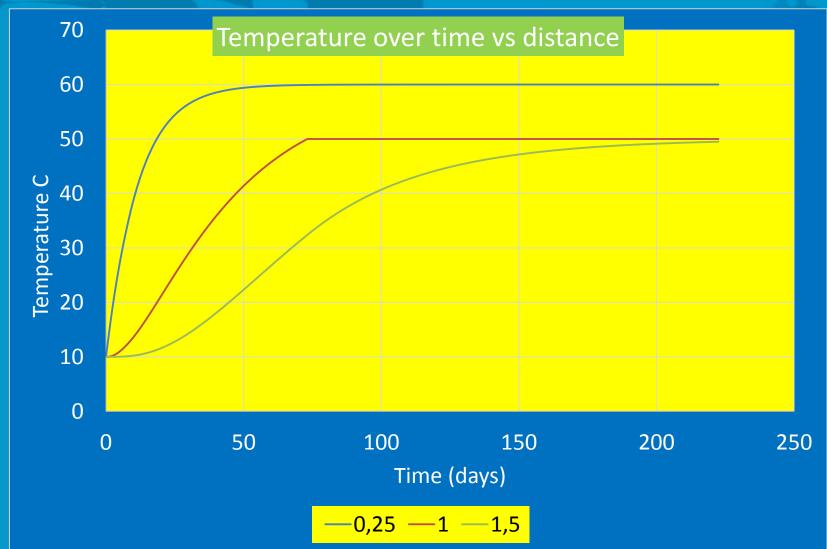

	Heating using an gasoil fired boiler		
	Quantity of steam supplied by facility 100 kg/hr	100	kg/h
	Thermal energy contained in 100 kg/h vapour	251.040	kJ / h
1	System efficiency		95%
	Thermal energy effectively used	238.488	kJ / h
	Thermal energy required to heat & evaporate influx water 0 m3/hr	16.736	kJ / h
	Energy available to heat the soil	221.752	kJ / h
	Time theoretically needed to heat the soil to 50C (excluding evaporation of		days
1	water)	8	(theoretical)
			days
	Time effectively needed to heat the soil to 50C (excluding evaporation of water)	8	(effective)
	Time theoretically needed to heat the soil to 50C (including evaporation of		days
	water)	8	(theoretical)
			days
	Time effectively needed to heat the soil to 50C (including evaporation of water)	8	(effective)
	Duration HOT	150	days
	Energy Consumption : 56 - 64 kg oil/1000kg steam		
	Total oil consumption		
	Heat-up phase (8 days)	1.460	
	Hot phase (150 days)	8.641	
	Total oil consumption	10.101	

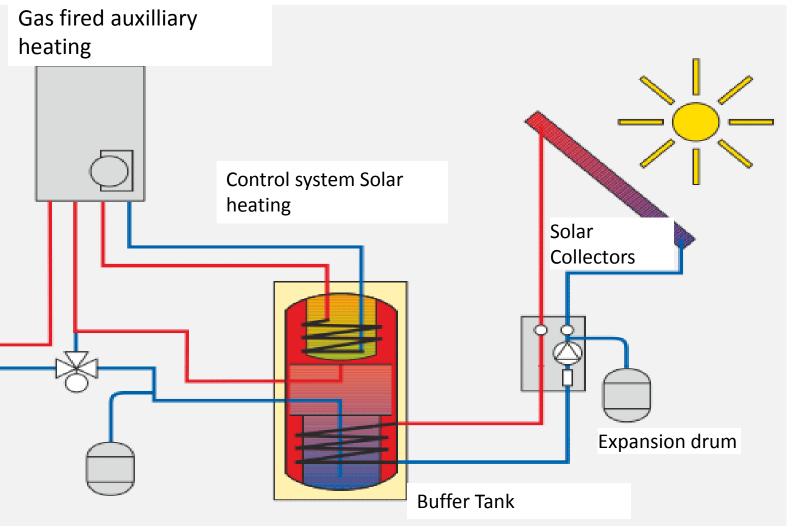
Energy calculations Conductive Hydraulic Heating



	Heating using 6 solar panels		
	Number of panels	6	number
	Thermal energy delivered by 6 panels	11.232,9	kJ / h
5	System efficiency	95%	
	Thermal energy effectively used	10.671,2	kJ / h
	Thermal energy required to heat & evaporate influx water 0 m3/hr	-	kJ / h
	Energy available to heat the soil	10.671,2	kJ / h
	Time theoretically needed to heat the soil to 50C (excluding evaporation of water)		days (theoretica I)
	Time effectively needed to heat the soil to 50C (excluding evaporation of water)		days (effective)
	Time theoretically needed to heat the soil to 50C (including evaporation of water)		days (theoretica I)
	Time effectively needed to heat the soil to 50C (including evaporation of water)		days (effective)
	Duration HOT	180 days	
	Total Remediation time	338	days



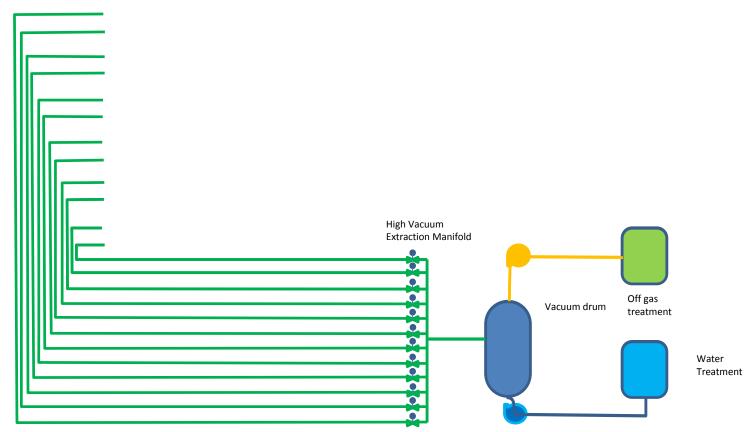

Energy calculations steam (2)

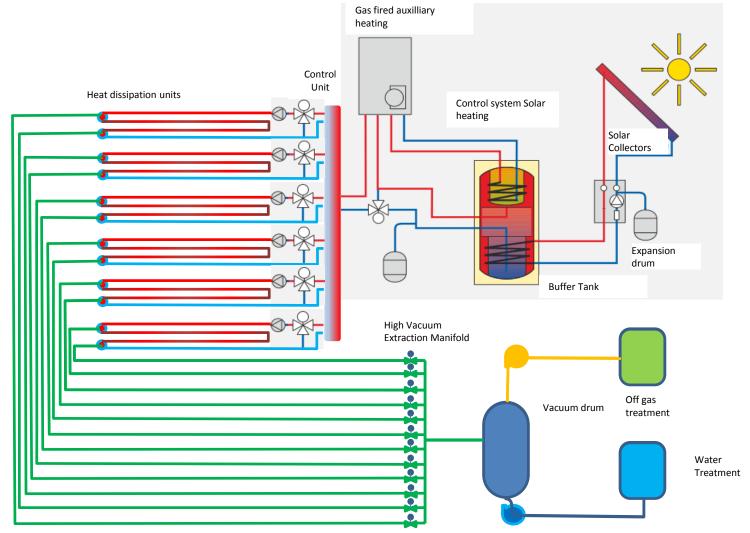

Heat Collection System

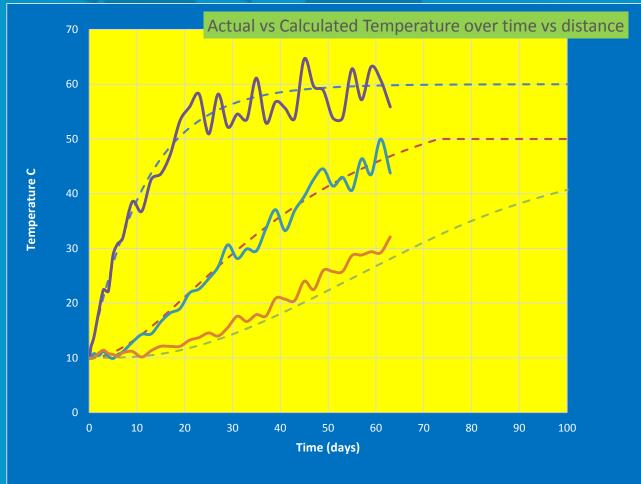
Down Well Unit

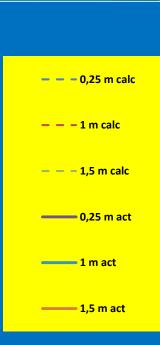
Control Block

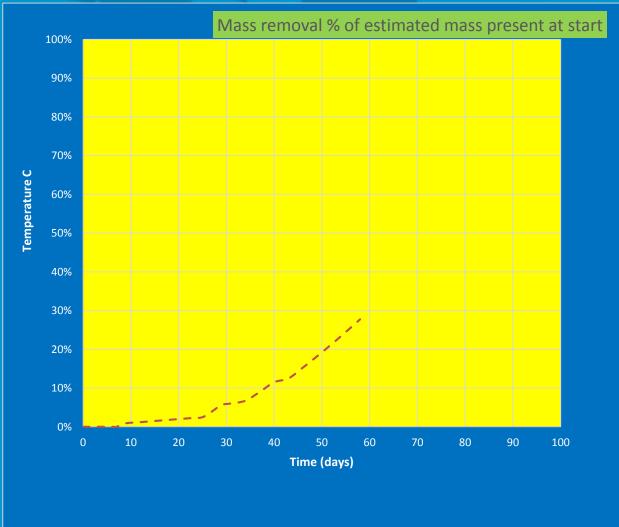
Down Well Unit for two wells


Extraction System


System


Actual temperature gain




Actual temperature gain

Solution Provider in Environmental Asset Management

Leading in soil and groundwater remediation

Thank you for your attention

Groundwater Technology

Sheffieldstraat 13 3047 AN Rotterdam P.O. Box 12115 3004 CG Rotterdam

Nederland Belgie

E-mail: info@gtbv.nl info@gtbelgium.be Web: www.gtbv.nl www.gtbelgium.be

Tel: +31 (0)10 238 2850 Cell: +31 65 391 6526