

Salinity Tolerance of Native Plants and Soil Amendment Potential for Reclamation

Jean-Marie Sobze

Project Context

- Produced water spilled on two industrial sites
- Remediation measure:
 - Excavation of contaminated soils.
- Problem: Exposure of naturally saline sub-soil

Purpose

- Conduct greenhouse studies to evaluate local trees and shrubs tolerance to soil salinity.
- Examine the impact of propagules deployment methods: Seedlings vs. Seeds

• Assess soil amendment effect.

Method

- Seeds collected from the same seed zone as the spill site
- Soils originated from remediated sites
- Soil Preparation
 - Treatment with a mixed solution of MgSO₄, CaCl₂, and Na₂SO₄.Soil aged for at least Two weeks.
- Salinity levels: 4,6, 9, 12 dS/m
 - Control: Non-disturbed soil from surrounding forest

Experiments

- Seeding
 - Stratified seeds were directly sowed on treated and control soils.
- Transplant
 - Seedlings grown with nursery peat mix were transplanted (in treated and control soils (hot and cold planting)
- Amendments
 - Zeolites
 - Bio-char
 - T-Caron

Seed Emergence and Survival

(d) Aspen

Bebb's Willow: Seed Emergence and growth on Organic Soils

Control

9 dS/m

Autumn Willow: Seed Emergence and growth on Organic Soils

4 dS/m

Control

9 dS/m

6 dS/m

Early Establishment: Shoot Growth

Roots Development - Autumn Willow

Control

4 dS/m

6 dS/m

Root Development - Bebb's Willow

Control

4 dS/m

6 dS/m

9 dS/m

Early Establishment: Root-Shoot Ratio

Low rootshoot ratio for all species in all treatments

EC at the End of Experiment

Seedling Transplant - Mineral Saline Soil

Survivorship of 5 Species

Plant were considered alive when they had a green stem.

Many plants on saline soils had death tops.

All species had survivors on soil with 9 dS/m or lower

Seedlings Performance

Paper birch

Bog birch

Seedlings Performance

Bebb's willow

Autumn willow

Seedlings Performance

12 dS/m 9 dS/m 6 dS/m 4 dS/m . Control

N. control 4 dS/m 6 dS/m 9 dS/m 12 dS/m

Labrador Tea

Root Development - Bog Birch

Nat control

9 dS/m

4 dS/m

6 dS/m

12 dS/m

Root Development - Labrador Tea

Nat control

9 dS/m

4 ds/m

6 dS/m

12 dS/m

Root-Shoot Ratio

Final Soil Electrical Conductivity

Salinity Tolerance of Dormant Seedlings

Transplant of peatland and upland species from cold storage

Survival of Peatland Species on Peat Medium (Cold Transplant)

Survival of Upland Species (Cold Transplant)

The

Amended Saline Soil

Conclusion

- None of the species germinated and grew at 12dS/m.
- Bebb's willow performed better from seed than other species.
- The survivorship was higher from transplanted seedlings than from seeds.
- Paper birch and green alder were the least salinity tolerant species.
- Aspen seedlings showed better performance across all treatments than other species.
- Hot-transplanted seedlings performed better than the cold-planted ones.
- Soil amendment did not improve plant survival on saline soil.

Acknowledgement

Ryan O'Neill Bhupesh Khadka

Alberta Economic Development and Trade

BRI research team

Summer students

ZMM[®] CANADA MINERALS CORP.+

