

Extended Release Potassium Persulfate: Laboratory and Field Results

Brant Smith, Stacey Telesz, and Brianna Desjardins/Peroxychem Jean Pare/Chemco Gord Guest/Geotactical

Remediation Technologies Symposium 2017 (RemTech 2017) Banff, AB October 11, 2017

Presentation Outline

Types of Persulfate

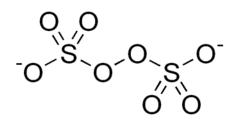
Klozur KP

Environmental

Solutions

- Batch tests
- Column tests
- Field Pilot

Conclusions



Persulfates

- Klozur SP
 - Environmental grade sodium persulfate
- Klozur KP
 - Environmental grade potassium persulfate

Key Persulfate Characteristics:

- A strong oxidant
- Applicable across a broad range of organic contaminants
- Extended subsurface lifetime (weeks to months)
- Little to no heat or gas evolution
- Activation results in the formation of radicals

 Different characteristics equals different opportunities

Temperature	Klozur SP		Klozur KP	
(∘C)	wt%	g/L	wt%	g/L
0	36.5	480	1.6	17
10	40.1	540	2.6	29
20	41.8	570	4.5	47
25	42.3	580	5.7	59

- Primary differences to sodium persulfate
 - ➢ Solubility

Environmental

Solutions

≻ K⁺ vs. Na⁺

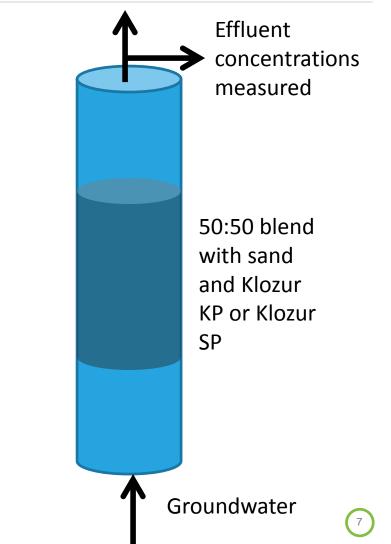
Characteristic	SP	КР
Formula	Na ₂ S ₂ O ₈	$K_2S_2O_8$
Molecular Weight	238.1	270.3
Crystal density (g/cc)	2.59	2.48
Color	White	White
Odor	None	None
Loose bulk density (g/cc)	1.12	1.30

Potassium Persulfate: New Opportunities

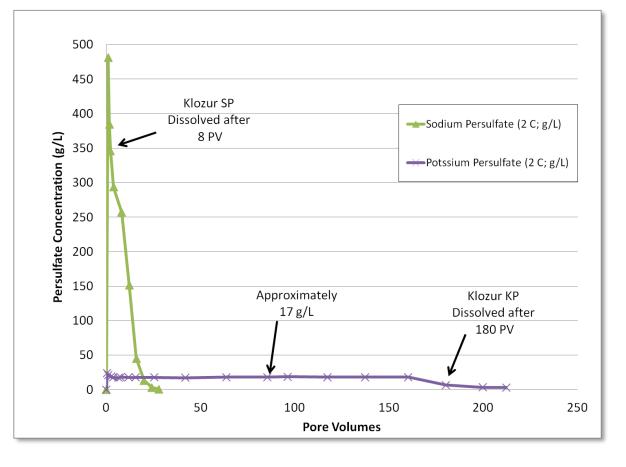
- Extended persistence of Klozur KP can help address some of the previous challenges and limitations:
 - Tight soils / clays matrix diffusion
 - Permeable reactive barrier applications
 - Diffusive aqueous phase contaminants (plumes, aqueous phase contaminants, etc)

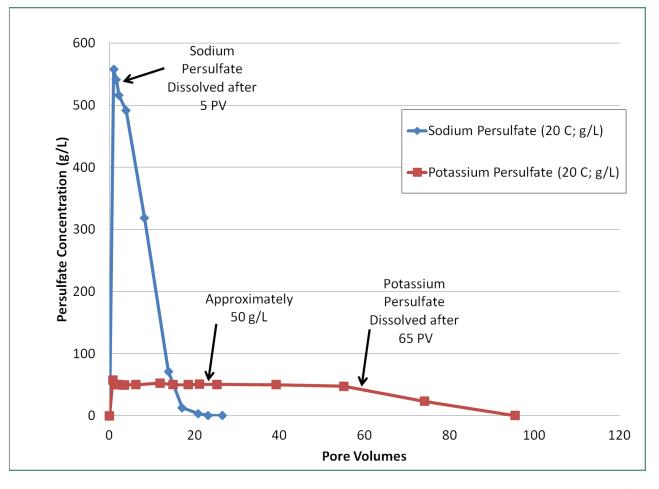
Solubility Limited Release Static System

Reactors at ~20°C Klozur KP Solubility = 47 g/L


Reactors at ~20∘C Klozur SP Solubility = 570 g/L

Solubility Limited Release Dynamic System


- Column Study:
 - 12 inch columns
 - 6 inch section of 50:50 blend of sand and either Klozur KP or Klozur SP
 - Targeting 300 g of oxidant
 - 3 inch sand above and below
 - Four columns
 - 2 °C :
 - Klozur SP
 - Klozur KP
 - 20 °C
 - Klozur SP
 - Klozur KP


Environmental Solutions **Column Study (2°C) Effluent Persulfate Concentration**

- Dissolution of Persulfate
 > 2 °C
- SP
 - Peak at theoretical maximum
- KP
 - Sustained at theoretical maximum

- Dissolution of Persulfate
 - > 20-25 ∘C
- Klozur SP
 - Peak at theoretical maximum
- Klozur KP
 - Sustained at theoretical maximum

Dissolution Study Key Conclusions

- Klozur KP maintained theoretical maximum concentration for most of study
- Rate of release of Klozur KP linear with groundwater flux (pore volumes)

- Key variables for determining longevity of solubility limited release:
 - Ideal:
 - Mass of KP present
 - Volume of groundwater contacted
 - Groundwater flow velocity or flux
 - Temperature
 - Site factors:
 - Target and non-target demand
 - Decomposition

KP PRB

Barrier

- Permeable Reactive Barrier (PRB)
- Conceptual Design of Gate
 - 20 m wide, 3 m high, and 1 m deep
 - > 43,500 Kg of Klozur KP
 - > 15% ePorosity

Groundwater Flow

Conceptual Dissolution Only Persistence of the Extended Release KP

Conceptual Klozur KP Persistence (years)						
Те	mp (∘C)	5	10	15	20	25
Solubility (g/L)		22	29	37	47	59
Groundwater Seepage Velocity (m/yr)	3	73	56	44	34	27
	10	22	17	13	10	8.2
	20	11	8.3	6.5	5.1	4.1
	30	7.3	5.6	4.4	3.4	2.7
	60	3.7	2.8	2.2	1.7	1.4
	150	1.5	1.1	0.9	0.7	0.5

Does not consider potential "site" factors

PeroxyChem

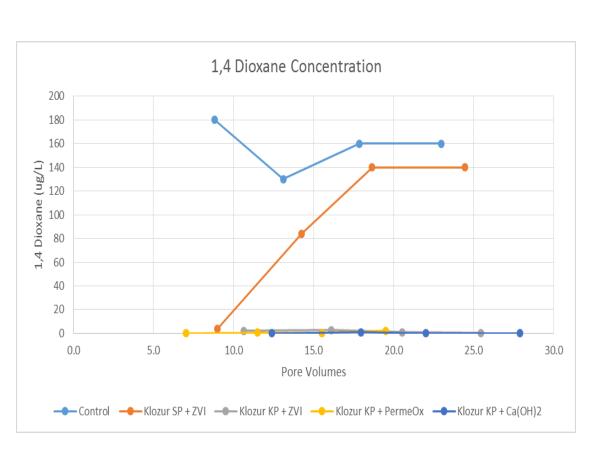
Activation of Persulfate

Sodium Persulfate:

Environmental

Solutions

- Aqueous phase oxidant aqueous phase activators
 - NaOH (alkaline)
 - Fe:Chelate
 - Hydrogen peroxide
 - Heat


Purchase of Klozur persulfate includes with it the grant of a limited license under PeroxyChem's patents covering the use of Klozur persulfate for environmental applications at no additional cost to the buyer

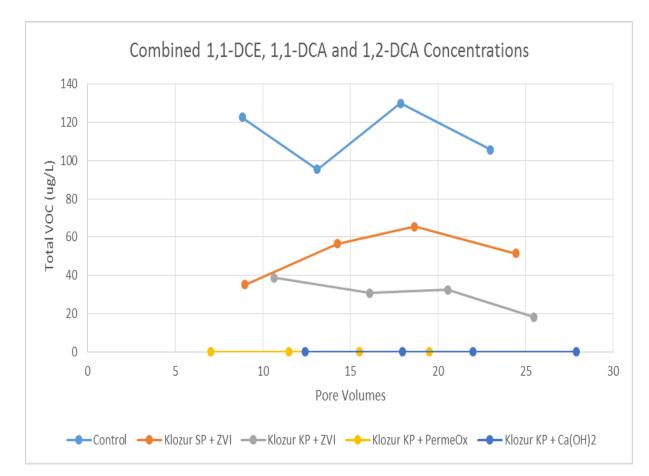
Potassium Persulfate:

- Solid/extended release
 oxidant
 - Solid/extended release activators
 - <u>Hydrated lime-Ca(OH)₂</u>
 <u>(alkaline)</u>
 - Zero Valent Iron (ZVI)
 - Separate trench (down gradient)
 - PermeOx Ultra (alkaline)

Treatment of 1,4-Dioxane

Environmental

Solutions


- All systems with KP treated 1,4- Dioxane to ND
- SP had breakthrough
- ZVI and hydrated lime lasted the longest

Treatment of CVOCs

- Alkaline activated KP treat cVOCs to ND
- ZVI activated KP-~75% treatment
- SP with ZVI-~50% treatment

Case Study

Environmental

Solutions

Courtesy of Riskcom and Toterra

- Former industrial sites in Germany
- Former drum area
- Contaminants: cVOCs, Naphthalene and BTEX
- Contaminants mainly in low permeable sandstone up to 12 m bgs
- Pump & treat not practical and not possible for excavation
- Preferred approach was hydraulically placed ISCO technology

Case Study

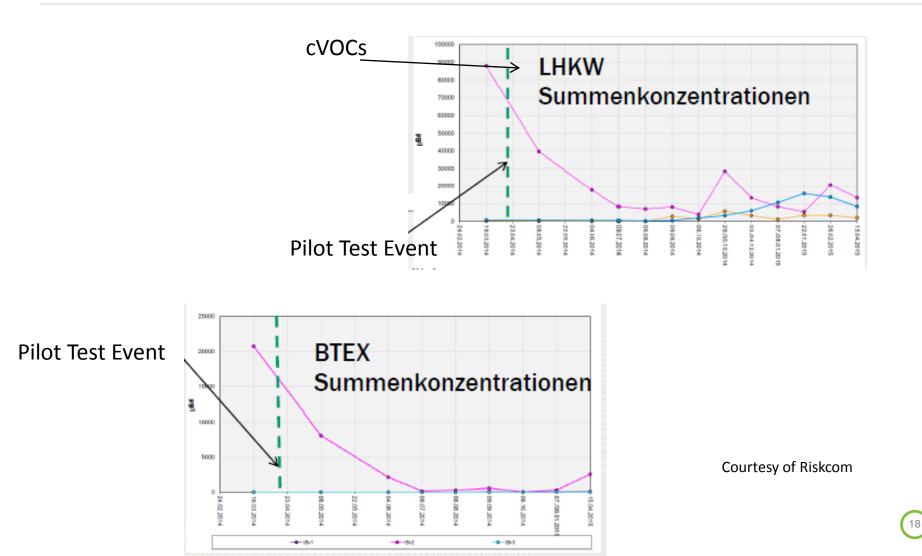
- Pilot Project:
 - Targeted 7 to 11 m bgs
 - Heavy GW impacts
 - Emplaced KP:
 - 3 injection location
 - 5 lifts per location
 - Total of 1,350 kg KP with
 200 kg of ferrous lactate

Tiltmeter Data

Area of influence of the fractures

– IBr-1

- 125 m2 (1,350 ft2)
- 9.1 x 13.7 m (30 x 45 ft)
- IBr-2
 - 111 m2 (1,200 ft2)
 - 9.1 x 12.2 m (30 x 40 ft)
- IBr-3
 - 127 m2 (1,375 ft2)
 - 7.6 x 15.2 m (25 x 55 ft)
- If circular: 6.2 m ROI (~20 ft)
 - Observed to be more rectangular



Long Term Monitoring Results

Environmental

Solutions

Results and Conclusions

- 1 Year Post Application Monitoring
- Successful distribution of KP and activator over a 200 m² area (2,152 ft²) with 3 injection locations
- Activated Klozur KP resulted in up to 99% treatment of Target COCs

Date	Contaminant (mg/L)					
	PCE	TCE	cDCE	BTEX	PAH	
3/19/2014	13,000	22,000	52,000	20,713	98	
10/7/2014	8	23	3,800	47	5	
Percent Reduction	99.9%	99.9%	92.7%	99.8%	94.5%	
4/15/2015	4	6	13,000	2,570	104	
Percent Reduction	99.97%	99.97%	75.0%	87.6%	-5.3%	

Courtesy of Riskcom

Potassium Persulfate Summary

- Extended Release
 - Target

Environmental

Solutions

- Groundwater plumes
- Low permeable soils
- Potassium residual
- Contaminants Treated
 - 1,4-Dioxane
 - MTBE
 - cVOCs
 - Petroleum hydrocarbons
 - Energetics
 - Pesticides, etc

- Critical Information:
 - Groundwater flux
 - Hydraulic conductivity
 - Hydraulic gradient
 - Aquifer temperature
 - Aqueous phase demand
 - Target
 - Non-target (COD, etc)
 - Depth to target interval

Conclusions

- Potassium persulfate (KP) offers an alternative to sodium persulfate (SP)
 - Both form the powerful oxidant persulfate anion
 - Different characteristics lend themselves to different field applications
 - Klozur SP: Source areas
 - > Klozur KP: Extended release or when you want potassium residual
- Used to target:
 - Low permeable soils
 - Permeable reactive barriers
 - ➢Soil mixing

Questions

Brant Smith, P.E., Ph.D Brant.Smith@peroxychem.com