

CANADIAN LEADER IN ENVIRONMENTAL EXPERTISE & SPECIALIZED PRODUCTS

Enhanced Bio-Remediation of heavy petroleum hydrocarbons and PAHs through dedicated endogenous microorganisms bio-stimulation

Presentation Outline

- About us
- Bio-Remediation Principles
- ChemBio Formulation
- Laboratory results
- Pilot tests design and preliminary results

Quality Dedication Expertise

About us

- Canadian Company founded in 1988
- <u>Production</u> and warehouses throughout Canada
 - Quebec
 - Ontario
 - Alberta
 - British Columbia
- Sectors of activity:

 - Industrial and Municipal Potable & Waste Water
 - Contaminated Soil and Groundwater
 - Air, Odours and Atmospheric Emissions (Activated Carbon, filtering medias)
 - Process Water & Thermal Exchange Fluids (Glycols)
 - Drilling Fluids (Oil and Gas & Diamond exploration)
 - Aircraft De-icing Fluids

Our product and services

Excellence & Science through proud Suppliers & Partners

ADVANCED OXIDATION TECHNOLOGY (AOT) Since 2005

EOS Remediation, LLC Since 2016

Bio-Remediation – Introduction

Bio-Remediation – Principles

<u>Bio-Augmentation</u>: Addition of exogenous microorganisms.
 Issues:

-Environmental concerns and legislations around the introduction of these organisms in an aquifer or soil matrix
-Adaptability, competition

<u>Bio-Stimulation</u>: Stimulation of endogenous microorganisms.
 Issues:

-Targeting the specific organisms that are competent in the degradation of the contaminants

Bio-Remediation – Principles

Optimizing Bio-degradation process:

Step 1-Feeding the beasts:

- Assuring the presence or temperature) & all esser
- In the soil, microorganise They need large amount energy source to functio
- Different substrates = dif
 - Simple carbohydrate living things
 - Lipids: require lipase
 - Starch: require amy
 - Cellulose: require cen
 - Lignin: require special oxidative enzymes (peroxidase, laccase)

Bio-Remediation – PAHs

Pyrene

Chrysene

Anthrac

Lignin

Bio-Remediation – Principles

Optimizing Bio-degradation process:

Feeding the beasts

Step 2-Enhancing bioavailability:

- Adding tension-active compounds (surfactant)
- Favoring the production of Bio-surfactant
- Increasing and maintaining high temperatures (35-55°C)

Bio-Remediation – Principles

Optimizing Bio-degradation process:

Step 3-Controlling the pH & Modifying the ORP

Controlling the pH

-Extremes: 1-4 and 9-12 → lower biological activity

-Slightly alkaline: 8-9 \rightarrow risk of NH₃ toxicity and discourage fungi

-Slightly acidic to neutral: 5-8 → Promote bio-diversity

Modifying the ORP and the populations

Contaminant degradation mechanism can be positively increase by conducting a chemical shock before starting the aerobic bio-degradation.

Plenty of oxygen

-Increase the decontamination speed and efficiency

-Air movement allows for the elimination of gaseous and toxic by-products

Just enough water (will vary depending on soil type)

-Too little: Molecules stop to move and process stall

-Too much: Air movement is impaired, anaerobic conditions take place, process slow down.

ChemBio-formulation

<u>ChemBio composition</u>: Integration of all the biodegradation principles

- Feeding the competent species: Specific energy sources and a large panel of nutriments
- Surfactant presence that further increase biosurfactants production
- Initiate slightly acidic conditions
- Increasing the ORP and challenging the populations

• Low cost

Note: Addition of wood chips for improved soil structure and induce PAHs degradation (for fine grain geology and/or contaminant type)

ChemBio-formulation

Bio-stimulants drastically change the nature of the predominant microorganisms

Bacteria driven Remediation

Fungi driven Remediation

Enhanced Bio-Remediation - Tools, testing and tricks

Adjusting the formulation before you get to the field

Do competent microorganisms are naturally present in the soil matrix ?

Carbone source added: Heavy alcanes (C20-C50)

No carbone source added

Enhanced Bio-Remediation - Tools, testing and tricks

Adjusting the formulation: Laboratory testing

Duration: one week (growth pattern, pH Control, etc.)

Enhanced Bio-Remediation – Laboratory results

Mixte-L01	Silty sand								
	то	T28	M1 40-1-1	M1 40-1-1	M1 40-1-1 BP	M1 40-1-1 BP	Moyenne	Reduction %	Reduction mg/Kg
F2 (10-16 C)	240	20	0	0	0	0	0	-100	240
F3 (16-34 C)	1935	1605	980	840	790	820	820	-58	1115
F4 (34-50 C)	6170	4650	2810	2330	2300	2370	2370	-62	3800
F4g (>50 C)	15150	13850	6600	5400	6700	6440	6440	-57	8710
Total	23495	17245	10390	8570	9790	9630	9630	-59	13865
РАН	212,5	240,5	242	181	122	136	129	-39	84

THP-25 Heavy clay

	т0	T28	T1 40-1-1	T1 40-1-1	T1 40-1-1 BP	T1 40-1-1 BP	Moyenne	Reduction %	Reduction mg/Kg
F2 (10-16 C)	10	15	50	40	30	40	40	300	-30
F3 (16-34 C)	2315	1530	210	180	290	210	222,5	-90	2093
F4 (34-50 C)	660	720	20	30	100	50	50	-92	610
Total	2985	2265	280	250	420	300	312,5	-90	2673

Data in mg/Kg

TO: Initial concentration E

BP: Wood chips

Getting to the field: Preliminary design

- Passive aeration: applicable in remote areas
- Wood chips covering: Isolation, O₂ and NH₃ exchange, watering, monitoring...
- 1.5m height: reduce compaction

Preliminary results

• Two layers of microorganisms populations (Mixte-L01)

Preliminary results

Mixte-L01

THP-25

pH (THP-25)

Temperature (THP-25)

				<u>Days after treatment</u>			
Mixte-L01	L – Silty	7	14	21			
Total petrol	335	185	180				
				1730	1525	1760	
				1048	1155	947	
Before treatm	nent			6570	4205	0	
C>10-C16 (F2)	246	N. Andrew	Тор	9683	7070	2887	
C>16-C34 (F3)	1698	Sec. No. 4					
C>34-C50 (F4)	4381						
C>C50 (F4g)	11142		Bottom				
Total	17467			N/A	456	373	
			l	N/A	2240	2645	
				N/A	1020	1008	
				N/A	12100	0	
				N/A	15816	4026	

Mixte-L01 – Silty Sand

Total PAHs (mg/Kg)

Before traitement

Total	186
-------	-----

		Days after traitement			
IHP-25 –	Неаvy	7	14	21	
Total petrol	eum hy	328	442	215	
			5250	6075	6650
			1960	2420	2555
Before traiten	nent		14550	15200	0
C>10-C16 (F2)	750	Тор	22088	24137	9420
C>16-C34 (F3)	10950				
C>34-C50 (F4)	5740				
C>C50 (F4g)	24250	Bottom			
Total	41690		N/A	500	506
			N/A	7040	8450
			N/A	2625	2910
			N/A	20100	0
			N/A	30265	11866

Total petroleum hydrocarbon (mg/Kg)

Enhanced Bio-Remediation

Conclusions:

- A promising cost effective process of particular interest for difficult contaminants
- A strategy based on the possibility to sequentially harness different populations of indigenous microorganisms
- A formulation that encompasses many ingredients that cope with the presented principles of Bio-Remediation
- Pilot tests underway for further understand large scale potential of the research

Enhanced Bio-Remediation

Acknowledgements

Morelos University

Thank you for your attention !

Contact information E-mail: jean.pare@chemco-inc.com Tel: 418-953-3480 / 800-575-5422

Chemco-inc.com

Enhanced Bio-Remediation - Tools, testing and tricks

Adjusting the formulation before you get to the field

- Does competent microorganisms are naturally present in the soil?
- What is the pH and the buffering capacity of the soil?
- Calibrating the C/N ratio around 30 to 50, including the contaminants
- To which extent the structure of the soil need to be improved?
- Is PAHs present in the soil?

Evolution of microorganisms populations

- Two waves of biological attacks
- Possible explanation:

Heat \rightarrow Water reduction \rightarrow Increase O₂

• Fungal diversity

