

Challenges and Learnings from a Condensate Spill in Muskeg

RemTech 2017 – October 13, 2017


Stephanie Neilson – Murphy Oil Company Ltd. Clayton Robinson – Matrix Solutions Inc.

Challenges and Learnings from a Condensate Spill in Muskeg

- Initial Spill Site Conditions
- Initial Spill Response
- Remediation Strategy
- Remediation Areas 2 and 3
- Remediation Area 1

Initial Spill Site Conditions

Site Challenges

- Condensate Flammability
- Multiple Stakeholders
- Protected Species
- Organic Soils (Muskeg)
 - Site Access
 - Water Management
- Product Recovery and Remediation Constraints

Stakeholder Engagement

- Protection of receptors
- Protection of traditional land use
- Impact to local wildlife/vegetation
- Transparency
- Maximizing involvement
- Site security and protection of public

Initial Spill Containment and Surface Water Management

- Diversion trenches
- Clay plug cutoff walls
- Recovery bell holes

Subsurface Containment and Surface Water Management

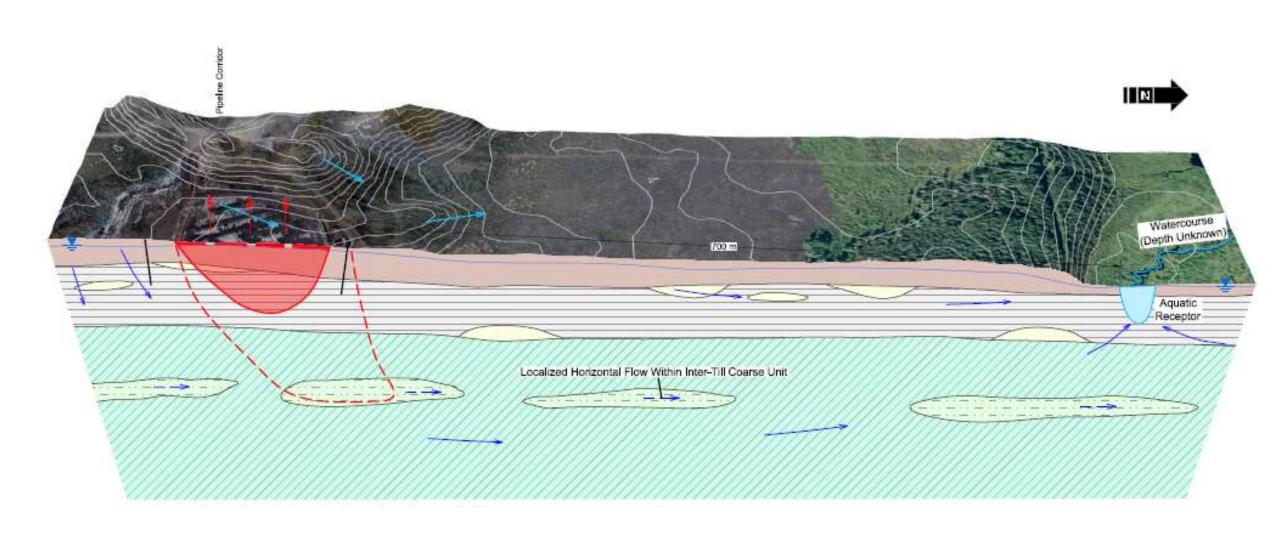
Subsurface Containment

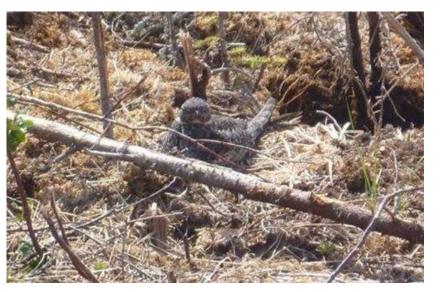
- Area 1: sheet piling wall
- Areas 2 and 3: clay plug and trench around

Surface Water Management:

- Prevent entry of overland flow into containment area
- Contain precipitation falling into containment area

Condensate Recovery


- Over 1,500 m of condensate recovery trenches and 17 bell holes
- Fire suppressant limited the ability to recover product
- Estimated recovery of 200 m³ of condensate



Subsurface Assessment and Conceptual Site Model

Monitoring

- No impacts to surface water bodies from spill
 - Petrogenic vs. biogenic toluene
- Wildlife Monitoring
 - Fencing, deterrents (effigies & auditory), remote cameras, acoustic recording units and nest sweeps
 - Common night hawk and other migratory bird nests

Remediation Strategy

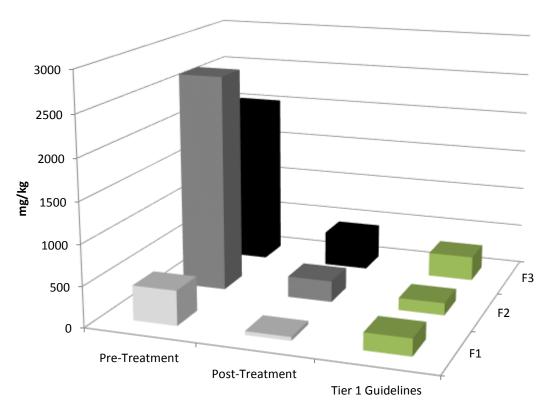
- Developed Risk Management Plan
- Risk Assessment

- Phased Remediation Approach
- Bench Scale Test

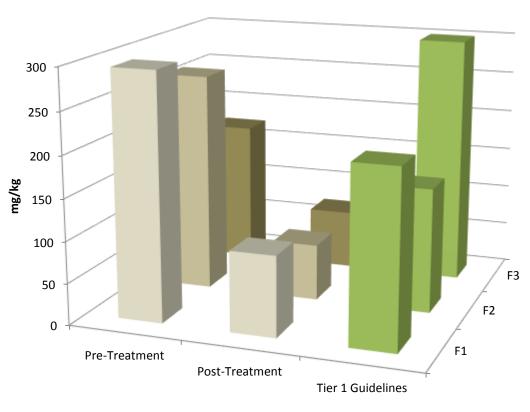
Technology	Safety	Stewardship	Sustainability	Science
Thermal Desorption Unit (TDU)	 Well established procedures Experienced Canadian vendor Extensive treatment train, many moving parts 	FN employment as laborers and operator assistantsAER endorses soil treatment	 Costly in remote areas High electricity and propane/natural gas inputs Clean water required to rehydrate treated soils 	Effective for PHCsQuestionable with PAHs
Multi-Phase Extraction (MPE)	- Highly engineered systems with shutdowns and controls	Specialized technologyMinimal to no FN involvementLonger remediation timeframe	 No soil removal Treat and re-inject groundwater High electricity inputs 	 Effective with conde Minimally effective in lower permeability soils (glacial till) Short-circuiting effect in peat, suction loss
Dig & Dump	 Trucking hazards Rollovers, wildlife encounters slippery/muddy roads 	- FN employment as laborers and truckers	 Pre treatment required to meet non-DOW Occupying landfill space Waste generator has liability in Canada 	 100% certainty on the remediation outcome Not sophisticated, relatively easy to implement
Allu & Bio-Treatment	 No off-site trucking risks Multiple machines in small work area 	 FN employment as laborers and site trucker AER endorses soil treatment 	 Less GHG emissions than dig & dump Soil recycling/reuse, no borrow needed Mother nature helping (PHC degraders) 	 Proven technology Used in Canada for 10 to 20 yrs

Bench Scale Test

- Challenge: 37,000 m³ of impacted soil
 - Large cost implications
 - Potential to introduce new contaminants
- Learnings: Natural bacteria already present at high concentrations
 - Determined maximum PHC concentrations that can be effectively treated onsite
 - Reduce final concentrations by adding minor amounts of inexpensive fertilizers


Remediation – Areas 2 and 3

- Excavated soil, segregating mineral and organic
- Treated soil within containment structures.
- Incorporated oxygen and nutrients using AlluTM buckets.
- Analysis of soil after each treatment to determine rate of PHC reduction and nutrient requirements.


Bioremediation Treatment Effectiveness

Peat x 3 Allu's with Nutrients

80-90% reduction in F1 85-95% reduction in F2 70-80% reduction in F3

Clay Till x 3 Allu's

55-75% reduction in F175% reduction in F245-70% reduction in F3


Remediation – Area 1

- Work is ongoing
- Learnings from bench test validated at by site results
- Larger volume of organic soil than Areas 2 and 3

Learnings

