

In-Situ Solidification and Stabilization of Coal Combustion Residuals: Bench-Scale Study Results

1250 Fifth Avenue, New Kensington, PA

Project Team

- Benjamin Gallagher, PE, Southern Company
- Jim Redwine, PhD, Anchor QEA
- Dimitri Vlassopoulos, PE, PhD, Anchor QEA
- Margaret Carrillo-Sheridan, PE, Anchor QEA
- Tony Moran, PE, Geo-Solutions, Inc.

Presentation Overview

- ISS/Soil Mixing History
- Bench Scale Study
- ISS as a Closure Tool
- Closing Remarks
- Discussion

In-Situ Solidification and Stabilization

Geotechnical improvement

In situ treatment

Contaminant containment

2

Contaminant S/S

History

Theory

 Commonly used to reference processes by which reagents are injected and mixed with the soil

Processes vary:

- <u>In situ</u>vs. ex situ
- Dry vs. <u>wet</u>
- Single auger vs. multi auger
- Auger vs. bucket vs. rotary tool

Theory

Stabilization: fixation, oxidation, reduction

Stoichiometry

Figures from Interstate Technology & Research Council, July 2011

Concentration (log scale)

REACTIONS Kinetics Thermodynamics Highly Soluble Cationic Oxyanionic Amphoteric 12 10 14 6

pН

Solidification: encapsulation, fixation

Geo-Solutions

Soil and Groundwater Problems Solved

Bench Scale Study Overview

- Sample Collection and Composition
- Geotechnical Index Property Testing
- Mix Design Development and Grout Testing
- Test Results
- Observations & Conclusions

Sample Collection and Composition

- Samples were from a former coal fired power station in the eastern US
- Power station burned bituminous coal and collected fly ash using electrostatic precipitators
- Fly Ash was wet sluiced to ponds
- Samples collected via a hydraulic excavator in 3 ponds
- Samples containerized in sealed 5-gallon buckets
- Nine samples collected from each pond and composited
 - B, C and D Ponds. D consisted of both a "dry" and "wet" composite

Geotechnical Index Property Testing

- Index testing performed to develop a baseline physical properties
 - Sieve analysis (with hydrometer)
 - Moisture content
 - Atterberg limits
 - Loss on ignition
 - Classification
 - Material pH
 - Material density Single Point Proctor at the as-received moisture content

Geotechnical Index Property Testing

Sample ID	Natural Moisture Content (%)	Organic Content (%)	: pH	% Gravel	% Sand	% Fines	% Clay (< 0.002 mm)	One–Point Unit Weight (pcf)
Pond B	12	5.7	5.2	1.6	33.8	64.6	5.9	102.2
Pond C	18	4.6	7.2	0.0	43.6	56.4	1.7	86.6
Pond D – dry	2	4.0	6.4	0.0	6.3	93.7	8.1	106.3
Pond D – wet	41	-	-	-	-	-	-	-
	Sample ID				Classification			
			JSCS Group Symbol	US	CS ⁶	USDA ¹¹	Atterberg Limits	
	Pond B		ML	Black, sandy silt, trace gravel		Silt Loam	Non-Plastic	
	Pond C		ML	Black, sandy silt		Sandy Loar	n Non-Plastic	
	Pond D		ML	Black, silt, little sand	ł	Silt Loam	Non-Plastic	

Mix Design Development and Grout Testing

- Mix Designs
 - Reagent Portland Cement only Lafarge Type I/II
 - Dosages 3, 5, 7 and 9% by weight of CCR
 - Water: Cement Ratios
 - 0.8 min
 - Adjust water to allow mix to be "workable"
 - Highest observed 12.5:1

- Grout Testing
 - Viscosity generally 28 seconds
 - ∘ pH 13.5
 - Density 66-86 pcf
 - Temperature 66-71 deg F
- Samples Storage
 - Stored in humid environment
 - Temperature 60-60 deg F
- Testing
 - Unconfined Compressive Strength
 - Hydraulic Conductivity

Mix Design Development and Grout Testing

- Sample Specimens & Storage
 - 2-inch by 4-inch
 - 3-inch by 6-inch
 - Stored in humid environment
 - Temperature 60-60 deg F

Testing

- Unconfined Compressive Strength
 - 7, 14 and 28 days of cure
- Hydraulic Conductivity
 - After 28 Days only

Sample ID	Mix Date	Material	Mix Density (pcf)	PC (%)	W:C	W:S	W:CM	Fly Ash (%)	7 day UCS ¹⁵ (psi)	14 day UCS ¹⁵ (psi)	28 day UCS ¹⁵ (psi)	28 Day Permeability ¹⁴ (cm/s)
Mix 1			104.5	3%	11.0	0.47	0.71	64.6	4.5	9.9	9.6	
Mix 2	1/18/2017 Pond B	Dond P	101.5	5%	7.0	0.49	0.73		11	14	22	4.3x10 ⁻⁵
Mix 3		Ропав	102.4	7%	5.0	0.48	0.71		15	29	31.8	3.0x10 ⁻⁵
Mix 4			99.3	9%	4.0	0.48	0.79		23	25	31	
Mix 5	1/19/2017 Pond C		90.0	3%	12.0	0.58	1.01	56.4	*	*	*	
Mix 6		Rond C	90.6	5%	7.5	0.59	1.00		*	10	8.3	
Mix 7		Pona C	90.9	7%	5.5	0.59	0.98		6.7	17	22	9.4x10 ⁻⁵
Mix 8			91.8	9%	4.5	0.59	0.98		12	17	21	9.4x10 ⁻⁵
Mix 9			104.8	3%	0.8	0.43	0.45	93.7	15	16	15	
Mix 10	1/20/2017 Pon	Pond D (wat)	104.2	5%	0.8	0.44	0.46		17	23	26	
Mix 11		Tond D (wet)	103.6	7%	0.8	0.44	0.47		50.3	44	62.7	2.0x10 ⁻⁶
Mix 12			104.5	9%	0.8	0.45	0.48		54.1	54	66.9	
Mix 13			99.0	3%	12.5	0.39	0.42	93.7	*	7	13	
Mix 14	1/20/2017	Pond D (dry)	100.0	5%	7.5	0.38	0.41		25	44	41.4	
Mix 15			99.3	7%	5.5	0.39	0.41		50.3	70	76.8	
Mix 16			100.6	9%	4.5	0.40	0.42		50.6	59	64.0	
Mix 17	1/23/2017 Pond D (w		103.3	3%	1.5	0.45	0.48	93.7	*	6	11	
Mix 18		Pond D (wet)	101.5	5%	1.5	0.48	0.51		24	8	32.2	
Mix 19			102.7	7%	1.5	0.49	0.52		*	31	31	5.2x10 ⁻⁶
Mix 20			101.5	9%	1.5	0.53	0.56		*	40	48.4	

Notes:

*Samples were too soft or damaged during extraction and were unable to be tested.

%: percent; cm/s: centimeters per second; ID: identification; PC: Portland cement; pcf: pounds per cubic foot; psi: pounds per square inch; W:C = water to Cement Ratio; W:S: water to solids ratio; W:CM; water to cementitious materials

UCS: unconfined compressive strength

Observations & Conclusions

- Some evidence of spalling at 7-day cure duration on "dryer" initial fly ash
- Difficulties with extracting molds
- Little to no bleed or swell observed
- A significant percentage of strength gain occurred prior to 7 days and 14 days of cure time, respectively.
- 13 of the 20 mixes gained 50% or more of their 28-day strength by 7 days of cure time and 5 of those samples obtained 75% of their 28-day strength.
- 14 of the 20 samples surpassed 75% of their 28-day strength at 14 days and three samples were stronger at 14 days than at 28 days.
- These observations do not follow the expected strength gain of cement stabilized materials; however, it does appear that fly ash mixes (Pond D materials) tended to behave more like a cement stabilized material than the bottom ash most likely due to the greater fines content.
- Sulfate resistant cement and/or slag cement should be evaluated further to assess
 possible sulfate attack retarding the strength gain.

Observations & Conclusions

- Clearly, moisture content plays a significant role.
- For Ponds B and C, there was no significant hydraulic conductivity reduction with an increase in Portland cement addition.
- For Pond D, it did appear that the higher W:C ratio of the grout did lead to a higher hydraulic conductivity as expected. The high content of coarse grained particles likely led to the higher than expected hydraulic conductivity.
- There is a correlation between lower W:CM ratios resulting in increased UCS strength especially with Portland cement dosages greater than 3%. This data also may indicate that the coarser fraction bottom ash does not add strength as an aggregate would in concrete.
- There is a strong relationship between fly ash content (material finer than the No. 200 sieve) and both UCS and hydraulic conductivity. The mixes from Pond D produced much lower hydraulic conductivity, in an order of magnitude range, as well as consistently higher UCS results. The UCS and hydraulic conductivity results appear to indicate the old, weathered fly ash from Pond D retains its pozzolanic properties.
- An estimation of expected Portland cement dosage required to achieve a desired UCS may be based on the fly ash content of a CCR material.

Observations & Conclusions

Fines Content (%)

ISS of CCR Impoundments ISS as a Closure Tool

Infrastructure Needs for ISS

Essential

- Area for equipment and materials staging
- Access roads (for heavy equipment) to impoundment area
- Potable water
- Electricity (for mix plant)

<u>Helpful</u>

- Proximity to Portland cement suppliers
- Barge Access with offloading facilities

Full-Depth ISS

1 Acre Pond with Tangential Columns

- Tangential columns
- 5% Portland cement addition
- 10-foot diameter augers
- ~500 columns per acre
- Typical impoundment would require multiple rigs over multiple years
- May require embankment stabilization before ISS can be implemented
- Post-ISS surface restoration compatible with future use required

Localized ISS

- Target wet areas
- Focus on areas with anticipated redevelopment or other potential reuse
- Columns may be tangential or overlapping

- Access roads to areas within impoundment
- Reduces need for long-term dewatering and fluids management to maintain access

Containment

- Overlapping columns
- 7% Portland cement addition
- 4-foot diameter augers
- Columns could extend up to 100 feet below grade
- Columns would key into underlying confining layer
- ISS cap or traditional cap can be installed in addition to containment

Geo-Solutions

Soil and Groundwater Problems Solved

Closing

- ISS of CCR is Feasible and cost effective under the right conditions and applications
- All CCR materials are <u>Different</u>
- Bench scale studies
 - Account for bench scale to full scale performance differences
 - Target <u>2X desired strength</u>
 - Target <u>half an order of magnitude lower k</u>
 - Consider full scale construction approach
 - Consider compatibility & durability
 - Perform individual bench scale on each material type, by area within the pond and by depth or observed change in physical index properties

Discussion

Contact Us! <u>www.geo-solutions.com</u> Pittsburgh: 724-335-7273

Tony Moran, P.E. - Project Director tmoran@geo-solutions.com

