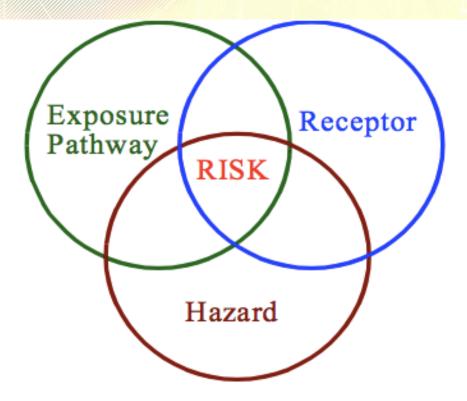


Soil Stabilization /Solidification (S/S) Technology as a Cost Effective Tool for Heavy Metal Risk Management

RemTech 2017

October 12, 2017 B.J. Min, M.Eng., P.Eng.

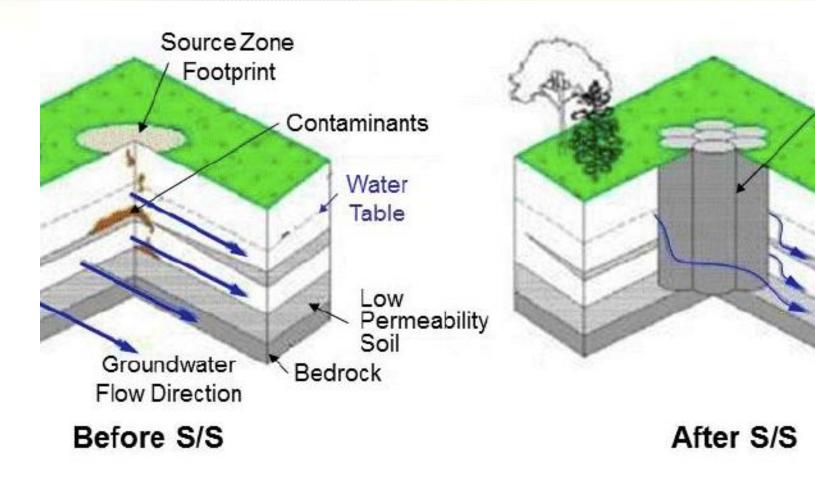

AGENDA

- Risk based Approach for Heavy Metals
- Total Metals vs. Leachable Metals
- Background Soil Stabilization /Solidification
- Project Objectives
- Approach and Activities
- Performance Verification Tests
- Findings and Discussion

Exposure Pathways and Control

Soil Direct Contact

Metal	Arsenic	Copper	Chromium	Lead	Zinc
AB Tier 1 Total Metal (mg/kg) Agricultural, Fine	17	63	64 0.4 (6+)	70	200
AB Landfill Criteria TCLP (mg/L)	5.0	100	5	5	500


Total Metal Based Approach

Leachable Metal Management Approach

Leachable Metal Management Approach

- Most common approach (solidification) involves incorporating inorganic cementitious and/or pozzolanic based reagents to:
 - Increase compressive strength
 - Lower hydraulic conductivity/permeability

Adverse effects

- Bulking & weight
 - Commonly 8% to >20% added
- Limited reclamation capabilities

Definitions

- Solidification "processes that encapsulate contaminated material to form a solid material and restrict contaminant migration by decreasing surface area exposed to leaching and/or by coating the contaminated material with low-permeability materials"
- Stabilization "processes where chemical reactions occur between the reagents and contaminated material to reduce the leachability of contaminated material by transition into a stable insoluble form"

Approach & Activities

Understanding of Fundamental Mechanisms

Literature Research

Remedial Selection - Lab Bench Scale Test

> Applications and Validation Field Pilot Test

Project Objectives

- Reduced Mass (S/S Reagents)
- Reduced Leachablity (i.e. precipitation and adsorption)
- Neutral pH
- Rapid Dewatering Capacity
- Maintain Soil Structure & Strength
- Favorable Conditions for Vegetation
- Reusable Material and Cost Effectiveness
- Less Toxicity

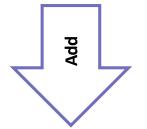
Selection of Amendments

- Dehydration and stabilization
- Precipitation & adsorption of metal(s)
- Dehydration and stabilization
- pH control
- Maintain soil structure
- Low Ecological Toxicity
- Reduced mass of applied reagents

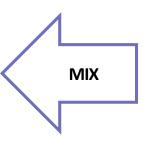
- Unconfined Compressive Strength
 - Hydraulic Conductivity
 - Leachability
 - Total Characteristic Leaching Procedure (TCLP)
 - Synthetic Precipitation Leaching Procedure (SPLP)
- and other methods such as Liquid-Solid Partitioning (LSP), Flux based Leaching Test

- Moisture Adsorption
- Turbidity
- Stabilization
- Vegetative Capacity
- Aquatic Eco Toxicity (TU)

Test Preparation



Test Batch Preparation



TRIUM

Source 1	Soil baseline	Pre	Post	Pre	Post	
	(mg/kg)	TCLP (mg/L)	SPLP (mg/L)		
Pb	934	0.082	0.032	0.027	0.009	
Cu	225	0.072	0.015	0.026	0.013	
Cd	10.29	0.112	0.021	0.013	0.02	
Cr6+	345	0.281	0.037	0.177	0.036	
As	50	ND	ND	ND	ND	
Zn	2450	ND	ND	ND	ND	

Sample ID	TP-15-2-1			TP-15-4-1				Refer	renced Guid	lelines		
Parameters	Soil baseline	Pre	Post 7 days	Post 29 days	Soil baseline	Pre	Post 7 days	Post 29 days	DL	BC	AB	SK
Palamotors	mg/kg		TCLP (mg/L)		mg/kg		TCLP (mg/L)		mg/L		TCLP (mg/l	.)
Antimony	503	< 1.0	< 0.1	< 0.1	722	< 1.0	< 0.1	< 0.1	0.1	NG	500	NG
Arsenic	344	< 1.0	< 0.1	< 0.1	572	< 1.0	< 0.1	< 0.1	0.1	2.5	5.0	2.5
Cadmium	799	25.0	< 0.05	< 0.05	338	9.04	< 0.05	< 0.05	0.05	0.5	1.0	0.5
Copper	3090	47.2	0.1	< 0.1	881	2.83	0.1	0.1	0.1	100	100	NG
Load	45100	41.7	-	< 0.1	19900	9.98	0.2	0.1	0.1	5.0	5.0	5.0
Mercury	•	0.0940	< 0.01	< 0.01		0.157	< 0.01	< 0.01	0.01	0.1	0.2	0.1
Zinc	20500	86.2	< 0.5	< 0.5	34000	<u>932</u>	< 0.5	< 0.5	0.5	500	500	NG

Note:

TCLP: Toxicity Characteristic Leaching Procedure

mg/L: milligrams per litre

DL: Laboratory Detection Limit

NG: No Guidelines Established

Number: Above the referenced guidelines

BC: British Columbia

AB: Alberta

SK:Saskatchewan

Sample ID	TP-15-2-2						
Parameters	unit	Pre	Post 7 days	Post 29 days			
Bulk Hydraulic Conductivity		3.48*10 ⁻⁵	4.96*10 ⁻⁵	-			
Moisture	%	40.0	28.2ª	16.9 ^b			

Note:

m/s: meters per second

%: Percentage

a: Post 4 days

b: Post 7 days

	RB4-Control	RB4-7%
Hydraulic Conductivity (m/s)	0.00000160	0.00000384

Metals (Soil)	SB-PP01	SB-PP02	SB-PP03	SB-PP04	Alberta Tier 1 Guidelines
Antimony (Sb)	2.02	1.45	0.65	5.12	20
Arsenic (As)	6.59	5.39	6.96	5.08	17
Barium (Ba)	1580	2050	865	176	750
Beryllium (Be)	0.46	0.30	0.59	0.48	5
Cadmium (Cd)	3.17	3.50	1.61	0.48	1
Chromium (Cr)	18.3	13.3	24.5	21.6	64
Cobalt (Co)	6.67	4.76	12.0	8.46	20
Copper (Cu)	64.9	31.0	35.7	26.3	63
Lead (Pb)	5970	8760	3330	1540	70
Mercury (Hg)	2.6	0.59	0.82	0.35	7
Molybdenum (Mo)	0.74	0.53	0.39	0.55	4
Nickel (Ni)	12.9	7.87	27.9	15.9	45
Selenium (Se)	0.34	0.28	0.28	0.30	1
Silver (Ag)	0.61	0.66	0.37	0.15	20
Thallium (Tl)	0.06	0.05	0.06	0.08	1
Tin (Sn)	26.7	33.9	8.8	3.0	5
Uranium (U)	0.39	0.24	0.37	0.46	23
Vanadium (V)	32.2	22.2	47.1	46.4	130
Zinc (Zn)	1840	2040	967	438	200

TSS-PP01- TCLP PS-70	TSS-PP01- PS-7DAYS	TSS-PP02-	SS-PP02- PS-7DAYS	TSS-PP03- PS-7DAYS	PS-7DAYS		ΔΥς 2-Ρ5-	TSS-PP04- PS-7DAYS	1				
	. (11)//	(Test 1)	ODAY (Test 1)				ODAY (Test 1)		7DAYS (Test 1)	(Test 2)	AB	BC	SK
Lead (Pb)	3.75	<0.50	 3.64	<0.50	1.16	<0.50	8.21	8.46	6.53	2.83	5.0	5.0	5.0
Zinc (Zn)	 9.2 	<5.0	 11.0 	<5.0	 <5.0 	<5.0	<5.0	8.6	5.8	5.4	500	500	NG

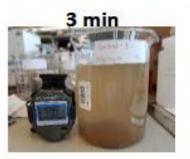
Sediment Samples

RB1-Control-Day 0 Day 0 (RB1) RB1 - Control 16/2017 \$6/2017

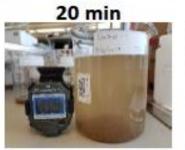
TRIUM

RB1-7% Day 0

RB1-9% Day 0



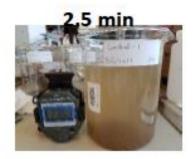
Turbidity Test (Control – 1) 0.5 min 1 min

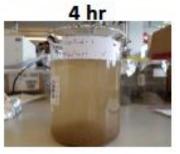

10 min



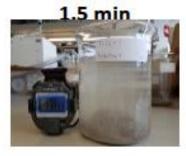
3.5 min



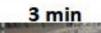

30 min



2 min



Turbidity Test (TSS-1) 0.5 min 1 min

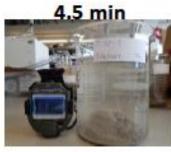


4 min

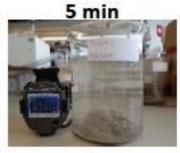
2 min

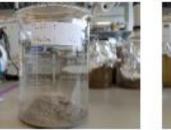
2.5 min

10 min

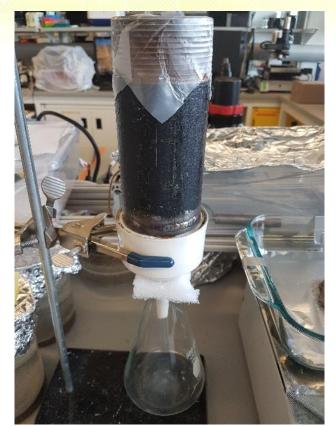


20 min




30 min

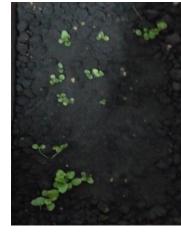
4 hr



Control

Lime based

Cement based



New Reagent

Jan. 25

Feb. 17

Aquatic Eco Toxicity Test - Water Flee

Metal	TU (Pre)	TU (Post)
Lead (Pb)	4.0	1.9
Arsenic (As)	6.1	2.0

Field Testing – Dredged Marine Sediments

Field Testing – Dredged Marine Sediments

55

Findings and Discussion

Application Parameters	Subject Blending	Cement	Lime	Polymer
рН	Neutral	Alkaline	Alkaline	Neutral
Permeability (porosity)	Normal	Poor	Poor	Poor
Compaction	Good	Good	Poor	Poor
Leachability	Reduced	Reduced	Reduced	Reduced

Findings and Results

- 3 component recipe of naturally occurring materials
 - Precipitation & adsorption of metal(s)
 - Dehydration and stabilization
 - Ideal for soils, sludge and dredge materials
 - Stabilizer is effective for moisture absorption to allow effective handling post process
 - 🗆 pH control
 - Maintain soil structure
 - Less Toxicity
 - Reduced mass of applied reagents
 - <7% by vol. with specific gravity <1</p>
- Have confirmed performance with 2 Major Formulas

Acknowledgements

- International Joint Development and Commercialization Program by Korea Environmental Industry & Technology Institute
- Korea Environmental Remediation Technology
- Seoul National University of Science & Technology
- University of Calgary
- Sublatus Earthworks & Environmental

R&D and Commercialization Specialists

ChemOx[®]

Remediation is Our Service Reality is Our Product

ChemOx[®] is a registered trademark of TRIUM Environmental Inc. Leading Applied Chemical Remediation Strategies

T) 403-932-5014 www.chemox.org

E) info@triuminc.com www.triuminc.com

Locations Cochrane (HQ) / Edmonton / Drayton Valley

International USA / Middle East / S. Korea / China

TRIU