Mistakes or Learning Experiences?

Evolution of Chlorinated Solvents Remediation in Brownfields

Tyler Mahn Remediation Scientist

Outline

- Chlorinated Solvents
- Evolution of Remediation Tools
- Case Studies
- Summary of Costs Implications to Projects
- Lessons Learned
- Project Updates

Chlorinated Solvents

- Widely used chemical compounds containing chlorine
 - Methanes, Ethanes, and Ethenes
 - PCE, TCE, DCE, VC
- Not particularly soluble
 - Solubility > established drinking water standards
- Dense non-aqueous phase liquids (DNAPLs)
 - Tend to sink resulting in complex dispersal patterns

Chlorinated Solvents

- Most commonly used as cleaning and degreasing agents in industrial and dry cleaning operations
- Widespread groundwater contamination
 - Poor disposal practices, leaking storage containers, uncontrolled discharge
- Colourless, volatile, and serious risk to human health

Chlorinated Solvents

- All chlorinated ethenes are toxic
 - Complete conversion from chlorinated ethenes to benign ethene is critical for detoxification

- In-Situ Chemical Oxidation (ISCO)
 - Oxidant injected directly into contaminated medium
 - Introduced into subsurface using direct push method as a water based solution
 - Can be applied under pressure
 - Propagated by water current and gravity
 - Type of contaminant
 - Soil conditions / hydrogeology

• Fenton's Reagent

- Hydrogen peroxide catalyzed with iron
- Low chemical cost
- Rapid reaction process
- Chlorinated and non-chlorinated solvents, PAH, VOC, BTEX
- Requires low pH, difficult to transport

Permanganate

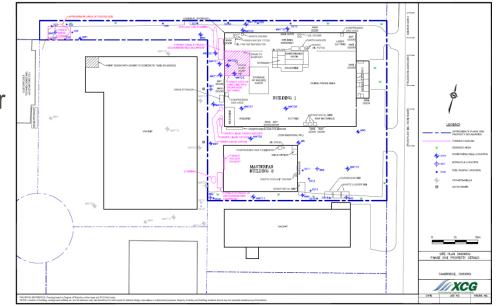
- Sodium or potassium permanganate
- Treats organic compounds with carbon-carbon double bonds
- Wider pH range
- Reacts slowly in subsurface
- Compound can move further and oxidize more contaminants
- Cost effective

• Persulfate

- Development in late 1990s
- Addresses limitations of previous technologies
- More stable/does not react quickly
- Fewer transportation limitations
- Highest water solubility and leaves least harmful by-products

- In-Situ Chemical Reduction(ISCR)
 - Opposite of ISCO
 - Reductant or reductant generating material injected into subsurface
 - Zero valent iron and carbon amendments
 - Anaerobic bioremediation
 - Contaminants converted into less toxic compounds

- Bioremediation/Bioaugmentation
 - Adding or fostering existing microbial strains capable of degrading contaminants
 - Typically requires carbon-based amendments
 - Most sites lack sufficient organic carbon to promote microbial respiration
 - Dehalococcoides capable of final stages of chlorinated solvent degradation



• Cambridge, Ontario

Overview:

- PCE & TCE impacts
- Former paint and degreaser dip tanks
- Fine sand and gravel aquifer
- Water table at ~ 18m
- Direct push injections low pressure

- Cambridge, Ontario
 - Oxidation to Reductive Environment
 - Potassium Permanganate injections 2010 2013
 - PCE concentrations <100 µg/l</p>
 - High oxidation-reduction potential in groundwater (+200 mV)
 - Bioaugmentation 2015 present

- Reverse conditions from highly-oxidizing to reducing (negative ORP values)
- Initial amendment \rightarrow Emulsified vegetable oil as food source (carbon donor)
- Groundwater monitoring
- Additional amendment → Anaerobic water and dehalococcoides (bioaugmentation cultures) to accelerate remedial process

• Cambridge, Ontario

• Kitchener, Ontario

Overview:

- TCE plus degradation products (cis-1,2 DCE, VC) (shallow and intermediate aquifer)
- Former degreasing operations
- Complex Geology Sand and gravel aquifer
- Shallow and intermediate water bearing units
- Water table at ~6m and 25m
- Dedicated injection wells

- 2003 2008
 - Manual application and pressurized injections of potassium permanganate
- 2009 Present
 - Reductive approach
 - Ceased injections in mid-2009 to allow ORP to return to reducing conditions
 - Widespread reduction in ORP in 2011, increase in 2012
 - significant rebound of chlorinated solvent concentrations
 - Increased concentration of degradation products suggest anaerobic reductive de-chlorination
 - Initial amendment (Sept 2017) → diluted molasses as food source (carbon donor) and recirculation of amended groundwater

• Kitchener, Ontario

Summary of Cost Implications to Projects

Cambridge

- Initial Oxidation Method
 - 3 years → ~\$235,000
 - Chemical costs (KMnO₄)
 - Drilling
 - Pressurized injections (6 events)
 - Groundwater monitoring (before & after)

Kitchener

- Initial Oxidation Method
 - 5 years → ~\$231,000
 - Chemical costs (KMnO₄)
 - Drilling
 - Pressurized injections (monthly, 4 years)
 - Groundwater monitoring (before & after)

Summary of Cost Implications to Projects

Cambridge

• Reductive Method (Bioaugmentation)

- 1 $\frac{1}{2}$ years \rightarrow ~\$150,000
 - Reversing oxidizing conditions (3 years)
 - Chemical costs (EOS-100, KB-1, micro-ZVI)
 - Drilling and injection services (3 events)
 - Groundwater monitoring before, during, and after

Kitchener

- Reductive Method
 - time frame and cost \rightarrow TBD

- Naturally reversing oxidizing conditions (7 years)
- Chemical costs (diluted Molasses)
- Injection services (1 event)
- Groundwater monitoring before and after

Project Updates

- Cambridge
 - Amendments and switch of state has been completed
 - Introduced high-concentration microbes to actively bio-remediate
 - Budget and time-frame met for this process, continue verifying conditions
- Kitchener
 - Observed naturally occurring decrease in ORP
 - Late Sept 2017 commenced with carbon-source amendments
 - Monitor conditions

Lessons Learned

- There is no "silver-bullet" method
- Methods and products used with high-success in many situations don't fit all
- Time = money
- Technological advancements continue to become commercially available
- Better understanding, trusted advisors, additional opinions
- Brownfield Redevelopment and time commitments don't always provide for experimentation, pilot-testing, delays

Mistakes or Learning Experiences?

Evolution of Chlorinated Solvents Remediation in Brownfields

Remtech 2017

Questions and Thank you

Tyler Mahn Remediation Scientist

