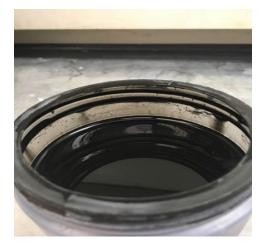


Carbon Amendments for Chlorinated Solvent Remediation: Analytical Challenges and Solutions

Heather Lord, Samantha Clay, Atena Georgescu, Mariana Cojocar: Maxxam, Mississauga.

Eric Veska: Stantec, Markham.

Success Through Science®


© Copyright Maxxam 2014

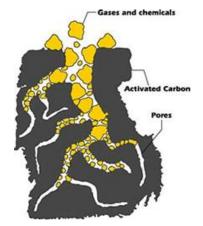
RemTech 2017

Activated Carbon-based Remedial Approaches

Overview:

- In-situ application of carbon-based amendments for chlorinated solvent remediation has emerged in the last decade.
- Two stage approach:
 - <u>Adsorption</u>: used since the 1950's for ex situ remediation
 - <u>Degradation</u>: ~ two decades of in situ use
- Considered as more effective than subsurface degradation alone due to the added retardation of contaminant migration

Available Activated Carbon Amendments


Activated carbon-based products that have been used for in-situ remediation*

Product	Size	Manufacturer	Additive	Target CoCs	Degradation
BOS-100	granular	Calgon	zero valent iron	cVOC	Abiotic reductive dechlorination
BOS-200	powdered	Calgon	electron acceptors, P, N, CaSO ₄ , bacteria	РНС	Aerobic (short-term) and anaerobic (long-term) bioaugmentation
COGAC	granular or powdered	Remington	calcium peroxide, sodium persulfate	cVOC <u>and</u> PHC	Chemical Oxidation, aerobic and anaerobic biostimulation
PlumeStop	colloidal	Regenesis	polymer, H ₂ and O ₂ releasing compounds, bacteria	cVOC <u>or</u> PHC	cVOC: anaerobic biodegradation; PHC aerobic biodegradation
carbon- iron	colloidal	non- commercial	colloid stabilizer, zero valent iron	cVOC	Abiotic reductive dechlorination

Typical Application Process

- **Investigation**: Pre-injection subsurface characterization.
- Select Loading Rate: Provide sufficient contact between amendment and contaminant.
- Injection:
 - Powdered and Granular: low permeability formations, direct push injection and formation fracturing
 - Colloidal: high permeability formations: direct push or injection wells

contaminant adsorption on activated carbon

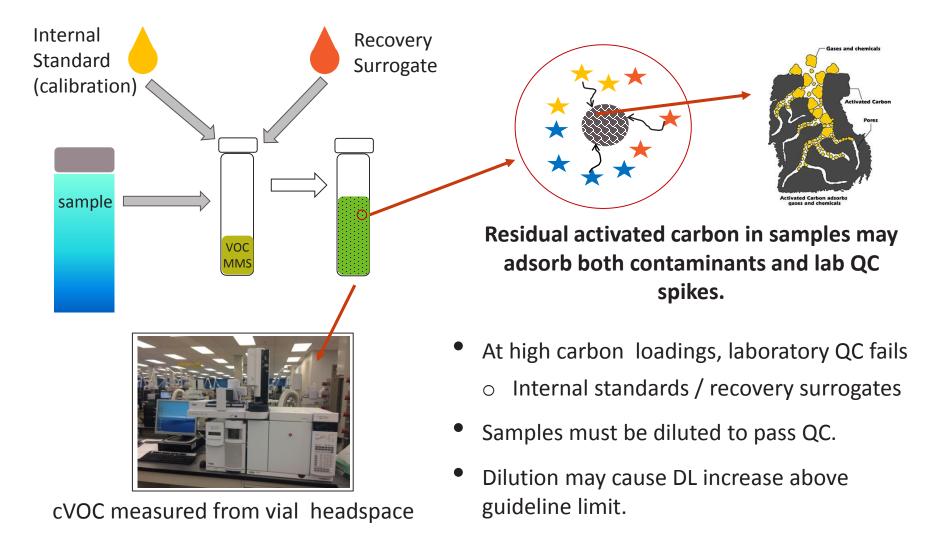
• Characterize distribution post-injection by soil coring – if necessary

Chemical Assessment of Remedial Performance

Field

- Monitor contaminant concentrations in separate monitoring wells.
- Amendment may appear in monitoring wells.

Lab


- Allow carbon to settle prior to analysis.
- Complete settling not always possible within required hold times.
- If material does not settle, analytical complications are possible.

Right vial did not settle

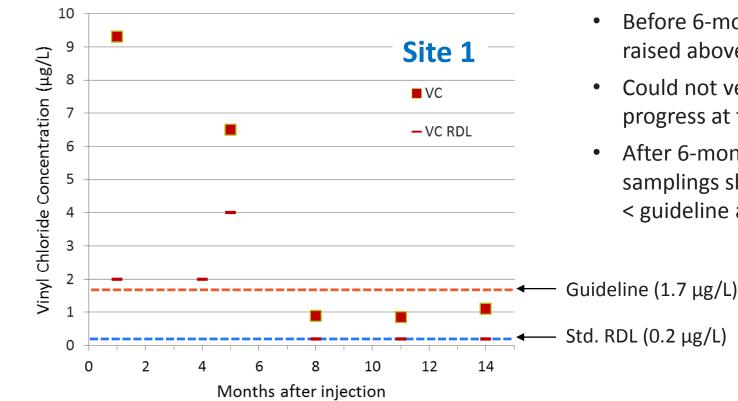
Lab Processes

Site 1 Overview

Low Concentration cVOC, Low Carbon Injected

- Vinyl Chloride (VC) was the remnant contaminant of concern following a 15 year effort including air sparging, pump & treat, vapour extraction
 - < 10 μg/L VC on site</p>
- VC has a low Site Condition Standard of 1.7 $\mu g/L$
- Concentration polished at last stage using colloidal carbon
 - 230 kg injected
- Monitoring started 1 month after injection
 - Low flow sampling

Site 2 Overview

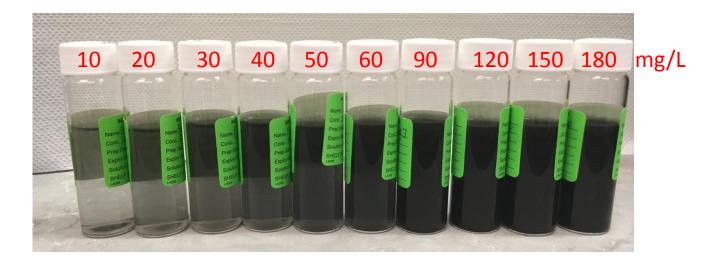

High Concentration cVOC, High Carbon Injected

- Up to 6,000 µg/L vinyl chloride (VC) on site
- Site Condition Standard for VC @ 1.7 μg/L is again the target
- Colloidal carbon used as first line of treatment:
 - 2,500 kg injected
- At 3 months post injection LAC concentration too high in many cases to permit direct analysis of cVOC.
- Passive Diffusion Bag monitoring pre- and post-injection

Site 1 – Low Flow Sampling Results

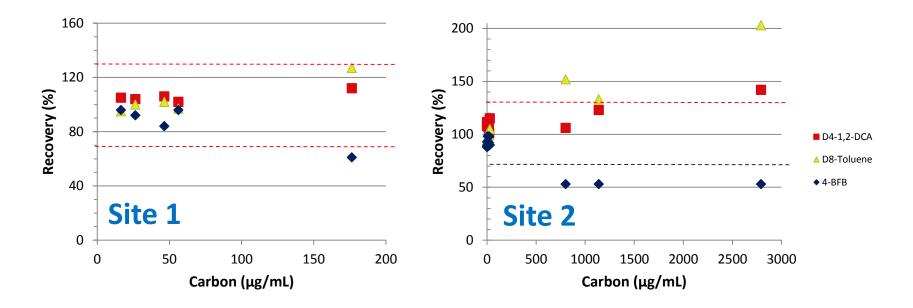
Vinyl Chloride in monitoring well post-injection prior to injection VC was @ 5 μg/L

All sampling by low-flow


- Before 6-months, RDLs raised above guideline
- Could not verify remedial progress at this stage
- After 6-months repeated samplings showed total VC < guideline and good RDL

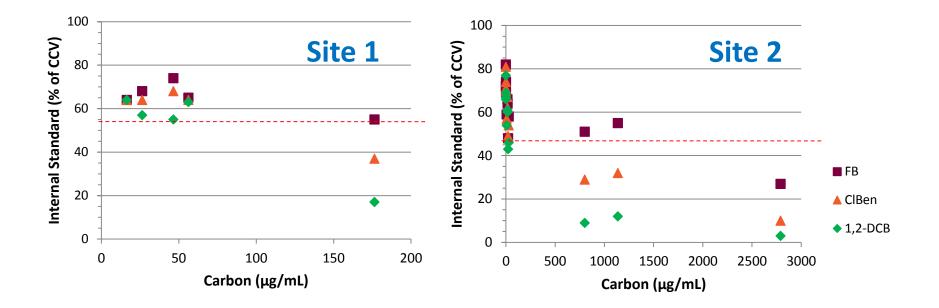
How much carbon causes QC to fail?

Measurement of carbon amendment concentration


- Measured by UV-Vis spectrophotometer.
- Provides guidance for loadings likely to cause QC failures and elevated DL

Recovery Surrogate Results – no dilution

Surrogate QC failures seen at suspended carbon concentrations >100 mg/L



- Surrogate recovery acceptance criteria 70-130% recovery
- Surrogates: d₄-1,2-Dichloroethane; d₈- Toluene; 4-Bromofluorobenzene

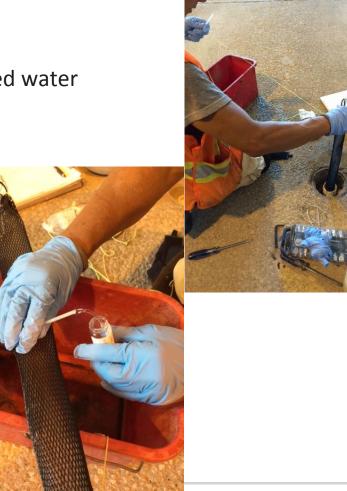
Internal Standard Results – no dilution

Internal Standard QC failures also seen at suspended carbon concentrations >100 mg/L

- IS acceptance criteria above dotted line
- Internal standards: Fluorobenzene; d₅-Chlorobenzene; d₄-Dichlorobenzene

Solutions / Sampling Alternatives

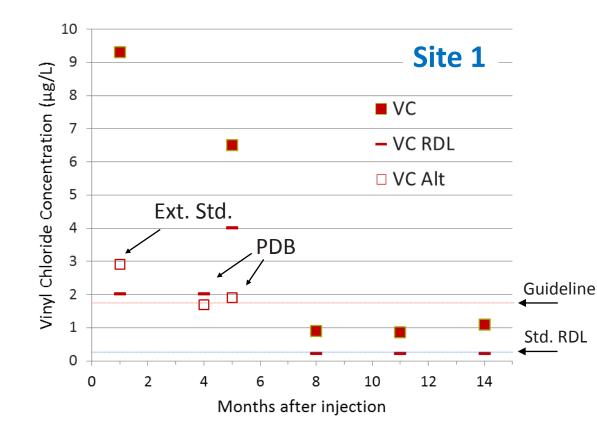
- **1. External Standard Calibration:**
 - Contaminant response compared directly to calibration curve
 - disregard failing internal standard responses and surrogate recoveries
 - Not a validated/accredited method
 - Reports free COC concentration
- 2. Passive Diffusion Bag Sampling:
 - Standard analyses, no carbon in samples, no problems with QC, 0.2 μg/L RDL achievable
 - Reports free COC concentration



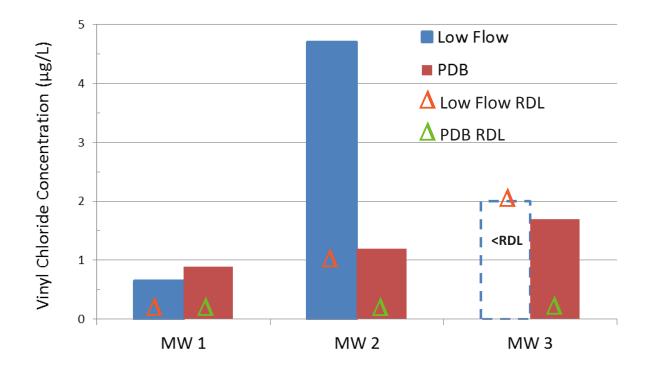
Overview: Passive Diffusion Bags (PDB)

Example COCs: BTEX, naphthalenes, chlorinated volatiles

Equilibration Sampling in Groundwater

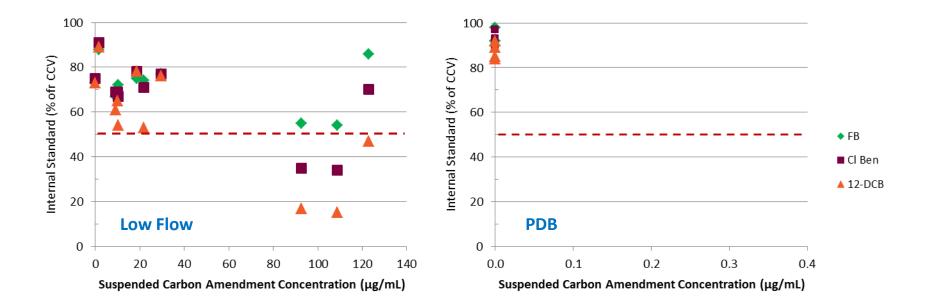

- Low Density Polyethylene tube filled with distilled water
- Deploy in monitoring well
- Equilibrates within 7-14 days
- Once equilibrated:
 - water concentration in PDB = well
- Transfer water from PDB to VOC vials and submit to lab for standard VOC analysis.

Site 1 – Low Flow Sampling Results


Vinyl Chloride in monitoring well post-injection prior to injection VC was @ 5 μg/L

- Regular VC analysis reports total concentration
- Ext. Std. and PDB, free concentration, RDL 0.2 μg/L
- Free concentration assessment: early evidence of remedial progress.
- Three repeated standard analyses at 8-14 months verify remedial success.

Site 1: Low Flow vs PDB - 4 mo. Post Injection

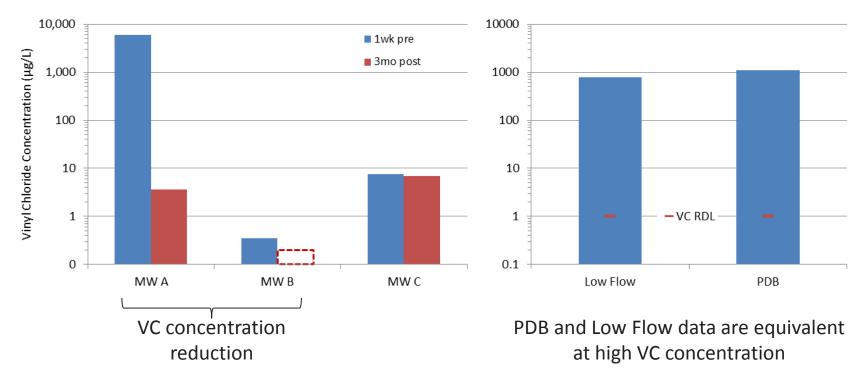


- Low Flow and PDB data in good agreement (within 10x)
 - $\circ~$ PDB RDLs well below guideline
- $\circ~$ Low Flow data likely higher due to inclusion of suspended colloid-associated VC

Site 1: Internal Standards – no dilution

Two sampling approaches: same wells, same time

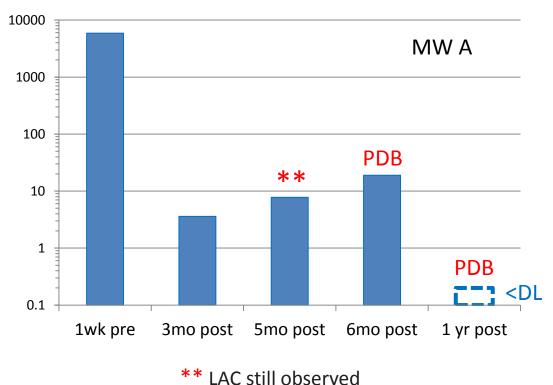
- No carbon concentration in PDBs
- Good clustering of IS recoveries in PDB samples



Site 2: Low Flow vs. Passive Diffusion Bags

High Vinyl Chloride, High Carbon Load

PDB – Pre and 3 months post injection, three wells


Low Flow vs. PDB in same well 3 months post injection

Site 2: 12 Month Remedial Progress

Some vinyl chloride at months 5-6, likely due to degradation of precursors: TCE, DCA

1 Year Post Injection

Conclusions

- Colloidal activated carbon was an effective remedial approach at both low and high concentration cVOC sites.
- High suspended carbon in monitoring wells interferes with lab analysis,
- Where it is not possible to obtain results with sufficiently low RDL due to residual carbon, use of passive diffusion bags reporting freely dissolved concentrations can verify remedial progress.
- Once carbon settles, PDB and standard analyses are the same.

Contact Us

Heather Lord Manager Environmental R&D Maxxam, Mississauga hlord@maxxam.ca 905-817-5711

Eric Veska Principal, Environmental Services Stantec, Markham eric.veska@stantec.com 905-415-6419

