Remediation Technologies Symposium 2017 (RemTech[™] 2017) October 11-13, 2017 - Fairmont Banff Springs

Acknowledgments:

BC Contaminated Sites Approved Professionals (CSAP) Society Dr. Matthew Lahvis (Shell Global Solutions) Mr. Harley Hopkins (ExxonMobil Environmental Services)

Parisa Jourabchi and Ian Hers

Evaluating Natural Source Zone Depletion at Petroleum Hydrocarbon Sites – New Toolkit of Technologies

Natural Source Zone Depletion

Definition:

"NSZD is a combination of processes that reduce the mass of LNAPL in the subsurface" ITRC (2009)

Can occur through volatilization, biodegradation and dissolution

Questions:

- How long take for sources to naturally deplete (e.g., to groundwater standards)?
- How far will dissolved plume migrate?
- How can we enhance attenuation?

MNA and NSZD Toolkits

October 13, 2017 *Golder Associates Ltd. 2016. Toolkits for Evaluation of Monitored Natural Attenuation and Natural Source Zone
 Depletion. Prepared for the Society of Contaminated Sites Approved Professionals of British Columbia (CSAP) and Shell
 Global Solutions, July 8th, 2016. Available on <u>CSAP Web Site</u>.

Plume Lengths and Stability: US Multi-Site Study of Retail Sites with Gasoline Impacts*

Summary of Plume Lengths

Parameter	Total Number of sites	Delineation criteria (µg/L)	Weighted mean on 90 th and 50 th percentile of plume lengths (m)
Benzene	165	5	130 / 55

Summary of Stability Condition: Concentrations

Parameter	Total Number of sites	Decreasing concentrations (%)	"Non-increasing" concentrations (%)
Benzene	905	63	92

Summary of Stability Condition: Plume lengths

Parameter	Total Number of sites	Decreasing plume lengths (%)	"Non-increasing" plume lengths (%)
Benzene	566	32	94

October 13, 2017

* From review of 13 multi-site or multi-plume studies (Connor et al., 2015)

California Multi-Site Study of Retail Gasoline Sites - Source Zone Attenuation (McHugh et al. 2014)

- Data from 4,000 sites with monitoring from 2001-2011 with >= 4 years of data
- The estimated median attenuation rate for benzene = 0.18 per year (all sites, most active remediation)
- When data analyzed separately for different technologies only slightly faster attenuation rate, effect of remediation limited

Technology	Constituent	Increase in Source Attenuation Rate (%)	MNA-only technology:	
SVE	benzene	28	72 Sites	
	MTBE	11	attonuation rate of	
Air Sparging	benzene	53		
	MTBE	22	Timeline to attenuation	
Chemical	bonzono	20	to 5 $\mu a/l$ from 10 ma/l :	
Oxidation	Delizene	20	58 vears	
Pump & Treat	MTBE	17	, coc	

California Geotracker Database

BC Case Study Sites: Gasoline Releases (6 sites)

Site 1 – remedial excavations Site 2 – extensive SVE

Long-term data indicates benzene decreased to < DW std. (5 µg/L) at 5 of 6 sites in 20 years, ethylbenzene **POINT:** did not reach std (2.4 µg/L) at any of the sites!

October 13, 2017

KEY

Step 1: Evaluation of Progress of MNA of Dissolved Plumes Step 2: Use of Screening Models and Measurements for Estimation of NSZD

Step 3: Use of Multi-Process Models for Evaluation of MNA and Plume Attenuation

Step 1: Evaluation of Progress of MNA of Dissolved Plumes

- MNA basics lines of evidence
- Statistical methods to evaluate plume behaviour
 - Parametric regression analysis
 (Regression Tool Developed)
 - Non-parametric method (Mann-Kendall)
- GWSDAT Software
- Ricker method
- New ideas for monitoring frequency

Step 2: Use of Screening Models and Measurements for Estimation of NSZD

- O₂ Gradient method
 - Initial screening method for approximate estimates
 - Vadose Zone Biodegradation Loss Model¹
- Carbon dioxide (CO₂) efflux methods
 - Dynamic closed chamber
 - Static trap
- Temperature method
 - Heat generation from aerobic biodegradation
 - Measurement of the thermal gradient

¹ Developed by Dr. Parisa Jourabchi and Dr. Ian Hers, Golder and Dr. John Wilson, Scissortail

Step 2: Comparison of Methods for Estimation of Unsaturated Zone Biodegradation

Method	Key Data Required	Advantages	Disadvantages	
Gradient	[O ₂] diffusion gradient, porosity, moisture, water table, native organic carbon	Simple method, uses readily available data	Sensitive to moisture and water table	
CO ₂ Efflux	Surface CO_2 efflux, ¹⁴ C of CO_2 , $\delta^{13}C$ of CO_2 (optional)	Direct measurement, avoids estimation of diffusive flux	Sensitive to natural soil respiration	
Temperature	Temperature profile, soil thermal conductivity	Direct measurement	Thermal conductivity difficult to estimate	

- Dynamic Closed Chamber (DCC)
- LI-COR Instrument: LI-8100A
 Automated Soil Gas Flux System
- Infrared Detector
- Survey System with 20 cm diameter chamber

- E-Flux Low Profile Static Trap Units
- Sorbent material made from calcium and sodium hydroxides

Step 2: Vadose Zone Biodegradation Loss (VZBL) Model*

- Method calculates the biodegradation rate based on:
 - O₂ flux estimated from O₂ gradient and effective O₂ diffusion coefficient
 - Methane flux from TPH degradation under methanogenic conditions based on decrease in soil gas N₂ concentration
- Simple to use model with several features to improve estimation process
 - Variable water table
 - Multi-layered soil
 - Optional baseline O₂ respiration
 - Mass balance for depletion

* Developed by Dr. Parisa Jourabchi and Dr. Ian Hers, Golder and Dr. John Wilson, Scissortail

VZBL Predicted TPH Profiles in Soil - example

Case Study - Former Refinery and Distribution Terminal

- Field trial conducted in area of former refinery and distribution terminal
- Petroleum hydrocarbon plume: weathered middle distillate with lesser amounts of lube oil
- Silty sand and silt (1.8 to 4.0 m thick) over coarse sand
- Depth to corrected water table:
 2.7 4.7 m
- Apparent in-well LNAPL thickness 0.01 to 0.6 m
- Relatively high organic carbon content near ground surface

Case Study – Former Refinery and Distribution Terminal

Objectives	Approach
Compare CO ₂ efflux methods	CO ₂ efflux - DCC and Static Trap
Better understand spatial and temporal variability	DCC repeat measurements short term and seasonal monitoring
Develop new method of correction for natural soil respiration	Use of radiocarbon (¹⁴ C) analyses & air sample collection
Compare CO ₂ efflux to Gradient method for estimation of NSZD rates	Average DCC estimates to gradient method estimates (VZBL model)
Estimate NSZD rates for study area	Combination of vadose zone estimates (CO ₂ efflux) plus saturated zone processes

Method Comparison of DCC and Static Trap Methods

Method Comparison – Total CO₂ Efflux by DCC and Static Trap

Key Points:

- Relatively high spatial variability in DCC effluxes
- Low temporal variability in DCC effluxes (measured over several days and during one day): RPD ranged between 11 and 51 %
- Relatively good correlation between static trap and DCC total effluxes (R² = 0.73)

RPD = relative percent difference

October 13, 2017

Total CO₂ Efflux by DCC Method

Key Points:

- Very large seasonal variability in CO₂ efflux measurements
- NSZD rates based on this data are considered to span the likely seasonal range, however, the lowest value represents an extreme short term condition.

Note different scales are used for each plot.

Total Efflux = Contaminant Soil Respiration + Natural Soil Respiration

 $J_{CO2} = J_{CSR} + J_{NSR}$

Objective: to estimate J_{CSR} or the fraction of J_{CSR} to J_{NSR} $F_{CSR} \equiv \frac{J_{CSR}}{J_{CO2}}$

- Radiocarbon or ¹⁴C analysis has been used to differentiate between CO₂ derived from fossil fuel and natural sources of atmospheric CO₂.
- Technique relies on ¹⁴C analysis, an unstable carbon isotope (with a half-life of approximately 5700 years) generated by cosmic rays in the atmosphere.
- Method builds on research studies conducted by Sihota and Mayer (2012) and Wozney (2017).

Key Points: Contemporary (modern) organic carbon is ¹⁴C-rich, while fossil fuel carbon is ¹⁴C-depleted

Radiocarbon Estimation of Contaminant Soil Respiration

- Novel method based on mass balance at each test location:
 - Sample collected is a mixture of ambient air (A) and soil gas (B)
 - CO₂ concentrations and fraction of modern carbon (¹⁴F) measurements of air samples
- Fraction of ¹⁴C content of carbon (F¹⁴C) is measured by accelerator mass spectrometry
- Assumes F¹⁴C associated with CSR is zero
- The decrease in fraction of modern carbon measured in soil gas and the ambient air represents fraction of CSR

$$F_{CSR} = {}^{14}F_A - \frac{{}^{14}F_B[CO_2]_B - {}^{14}F_A[CO_2]_A}{[CO_2]_B - [CO_2]_A}$$

evacuated Wheaton glass bottle

Hamilton[®] gastight syringe

NSZD Estimates – Total CO₂ Efflux & ¹⁴C Data

Table A: CO₂ Efflux Method

Time Period	Average Contaminant CO ₂ Efflux, J _{CSR} (µmol/m²/s)	Average NSZD Rate (US gal/acre/year)	Minimum NSZD Rate (US gal/acre/year)	Maximum NSZD Rate (US gal/acre/year)
June 23 to July 10, 2015 (dry and warm)	2.0	1,100	200	4,000
October 12 to 14, 2016 (moist and cool)	0.44	246	3.3	6,200
October 26 to November 1, 2016 (very wet and cool)*	0.010	5.5	2.5	9.4

*Short-term unseasonally high precipitation and essentially saturated conditions

NSZD Estimates – VZBL Spreadsheet Tool

Table B: Oxygen gradient-based method

Scenario			Estimated NSZD Rate		Equivalent CO ₂ Efflux
Soil Moisture Condition	Baseline Soil Respiration (mg O ₂ /g-OC/day)	Surficial Soil Type	g/m²/day	US gallons/acre/year	CO ₂ (µmol/m²/s)
Wet Fall (Oct 17-19)	0.11	NA	1.1	510	0.90
Dry Summer	0.35	Sandy loam	13	5,600	10.6
Dry Summer	0.35	Loam	3.6	1,600	2.9

<u>Key Points</u>: The site-wide estimate of mass loss from the VZBL model higher than estimates from contaminant CO_2 efflux measurements, but within the same order of magnitude.

October 13, 2017

NSZ

NSZD Processes & Rate Estimates

- Hydrocarbon dissolution & flow: <u>72 US gal/acre/year</u>
- Saturated zone biodegradation reactions: <u>35 US gal/acre/year</u> (Approximately 60% is estimated to be from methane production)

Vadose Zone Biodegradation Loss Rates

- NSZD rate measurements serve as basis for assessing NSZD as a remedy and can be compared to measured or estimated rates for other technologies
- Typically NSZD should be considered as a secondary remedy after primary active remediation is no longer effective or sustainable
- Recent case studies including the study presented here indicate that NSZD rates, though seasonally variable, can be significant and exceed rates for later stage active remediation
- Sustainability and lifecycle principles can aid in assessment of technologies and evaluation of technology <u>transition</u> – this is key – the sustainability Toolkit that Golder is currently developing addresses this
- Emerging focus is on evaluating compositional changes associated with NSZD and relative depletion rates

Ian Hers ihers@golder.com

Report Number: 1417611-001-R-Rev0

