

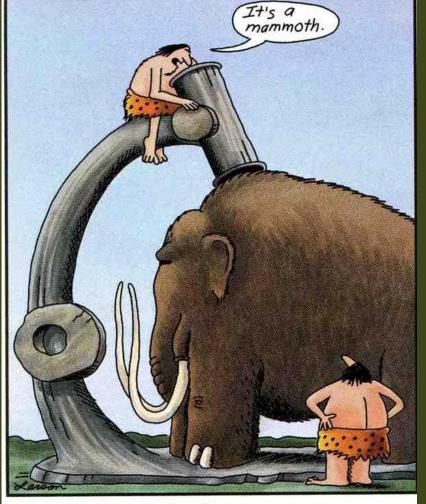
Cost Effective Tier 2 Remediation Guidelines for a Salt Contaminated Site in an Urban Davidson Cost Effective Tier 2 Remediation Site in an Urban Development

RemTech Symposium 2017

October 11, 2017

K. Eric Van Gaalen, M.Sc., P. Ag. and Dana K. Judd, B.Sc., P.Ag.

Table of Contents


O1
The Challenge

02

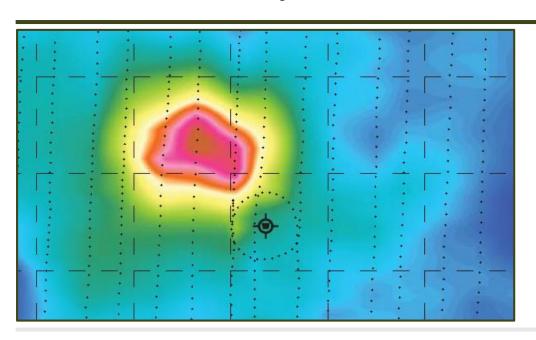
03 Planning

Case Studies

Field Considerations 05 Cost Savings

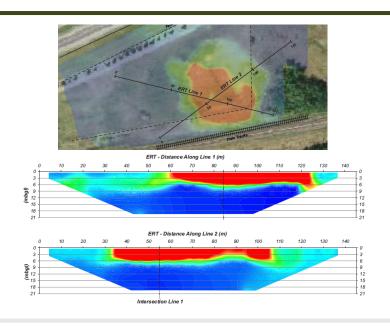
Early microscope

The Challenge


Assessing salt impacted sites

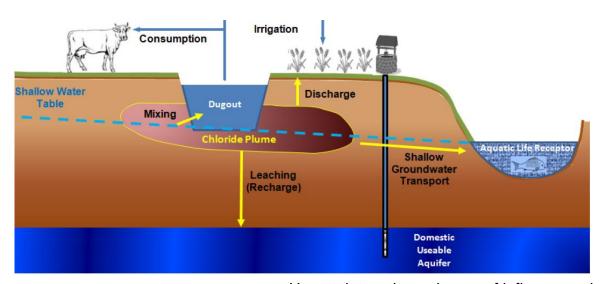
- Thoughtful Planning
- Excellent Communication
- Effective use of Tools

Case Study A: Urban Development


Future urban development

- End land use = residential
- Drilling waste disposal area
- Exceedances ~ 50 m x 50 m x $9 \text{ m} = 22,500 \text{ m}^3$
- Estimated remediation costs (to Tier 1) = \$2,250,000

Case Study B: Municipal Annex


Possible former road salt storage area

- Public Sector Accounting Standard **PS3260**
- Unknown fill source
- Exceedances ~ 65 m x 60 m x 10 m
- Estimated remediation costs (to Tier 1) = \$3,900,000

Planning: CSM Gaps

Pathways/receptors

- Residential: seldom IW / LW
- Up to ~35 parameters
- Which are most influential and least certain?
- Prioritize field efforts = \$ savings

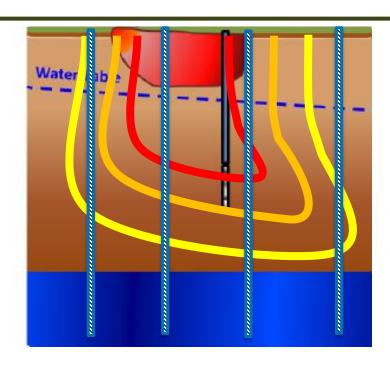
Uncertainty rating x degree of influence rating = priority level

Graphic credit: SST EQM Help File, AEP, 2013

Case A: Planning FAL pathway

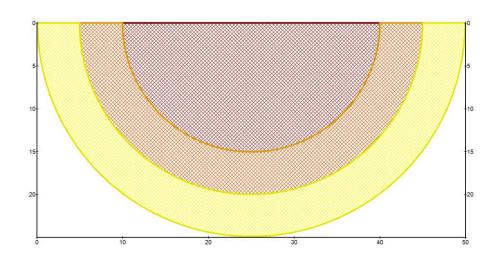
Limitations/Opportunities

- Class?
- **Groundwater connected?**
- **Groundwater flowing toward?**
- **Groundwater velocity?**
- Plume shape/sub-areas?
- Potential guideline range?
- <3 events?

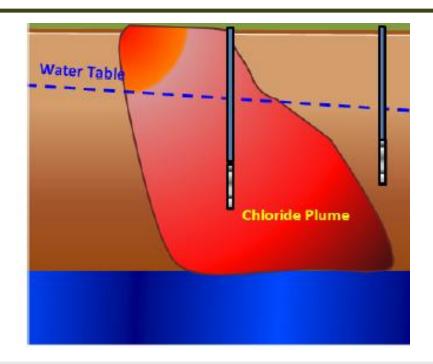

Image credit: Abadata, 2017

Case A: Planning DUA pathway

Limitations/Opportunities


- **Bottom of impact to DUA?**
- Plume shape/sub-areas?
- Vertical gradient?
- Vertical ksat?
- Horizontal dilution?
- Potential guideline range?

Case A: Volume reduction


Sub-areas Salvage Plan

- Volume/liability estimation
- Only remove worst case, if required
- Cost/benefit of sub-area characterization?
- **Balance guidelines**
- Every 100 m³ salvaged \$5k-10k

Case B: RMP options

Limitations/Opportunities

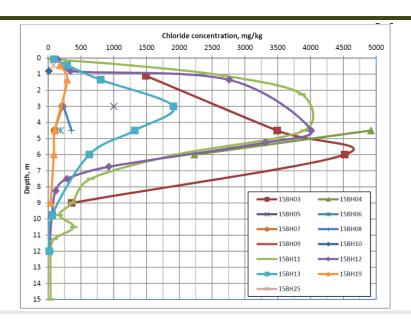
- DUA?
- Chem, ksat, pump test?
- SST potential for other pathways
- Groundwater delineation
- Goals: short or longer term?
- · Partial or full RMP

Field Considerations

Target key data

- Real time discussions
- Adapt to deviations
- Model checks
- Correlate data

Coarse grained material


Possible evidence of salinity impacts

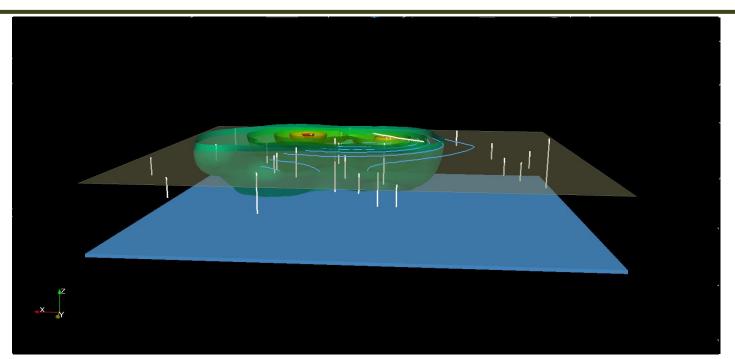
Field Considerations – Case Study A

Smooth sailing

- Low saturated hydraulic conductivity
- Clear bottom of impact
- Domestic use aquifer
- Site progression

Field Considerations – Case Study B

Unexpected conditions


- Saturated material
- Coarse-grained?
- Bottom of impact unclear
- Correlate field data

Saturated sandy loam material

Case B: RMP CSM visualization

Cost Savings – Case Study A

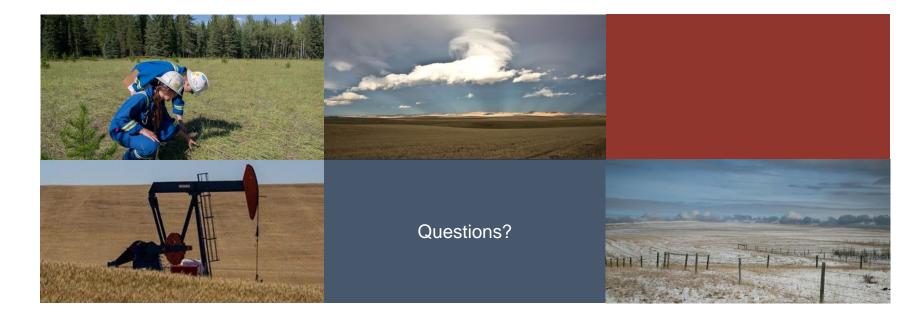
Item	Lesser Planned	Well Planned	Savings
Planning and correspondence	Not completed	\$10,000	-\$10,000
Supplemental Phase 2 ESA	\$25,000	\$50,000	-\$25,000
Groundwater monitoring	\$5,000	\$10,000	-\$5,000
Second supplemental Phase 2 ESA	\$40,000	Not required	\$40,000
Three groundwater monitoring events	\$15,000	Not required	\$15,000
Additional planning and correspondence	Not completed	\$10,000	-\$10,000
Remediation/risk management	\$2,250,000	\$525,000	\$1,725,000
Total	\$2,330,000	\$605,000	\$1,730,000

Cost Savings – Case Study B

ltem	Lesser Planned / Rem focused	Well Planned / RMP focused	Savings
Planning and correspondence	Not completed	\$10,000	-\$10,000
Supplemental Phase 2 ESA	\$20,000	\$50,000	-\$30,000
Groundwater monitoring	\$5,000	\$15,000	-\$10,000
Second supplemental Phase 2 ESA	\$30,000	Not required	\$30,000
Second groundwater monitoring event	\$10,000	Not required	\$10,000
Additional planning and correspondence	Not completed	\$10,000	-\$10,000
Remediation/risk management	\$4,000,000	\$1,200,000	\$2,800,000
Total	\$4,065,000	\$1,285,000	\$2,780,000

Conclusions

Plan and prepare


- Step back
- Focus assessment
- Communicate and Prepare for "what-ifs"
- Effectively use resources/tools

Thank You

