Superheated In-situ Thermal Treatment of SVOCs/VOCs Sites with Simultaneous Vapor Treatment Applying GTR-O Technology

GTTR Gas Thermal Remediation

Dr. Xiaosong Chen, PE

Outline of Today's presentation

(1) One Successful Case Study

Why Thermal Remediation

(2) Several Failed Case Studies

What Challenge we encountered

(1) One Case Study (Ningbo, China)

Area: 600 m² *14 m bgs
Former chemical industrial area

Site Challenge 1

- Lithology: silt and clay
- Low Soil Permeability
- Highly Heterogeneous Hydrogeology
- Groundwater level: <1m bgs
- hydraulic conductivity < 1x10⁻⁶ cm/s

Site Challenge 2

COC	Max Conc. (mg/L)	Remedial Goal (mg/L)
o-toluidine	770	0.43
Vinyl Chloride	26.1	0.023
DCE	0.816	0.19
2,6-Dinitro-toluene	1.05	0.051
2,4-Dinitro-toluene	3.22	0.058
5-nitro-o-toluidine	54	3.35
TPH	44.9	2.42

	Max	Remedial	Boiling
<u>COC</u>	Conc.	goal	point
	(mg/kg)	(mg/kg)	(°C)
Dinitro-toluene	65	11.43	300
o-Toluidine	271	20.77	200
DCE	147	10.65	84

Challenge 3

Tight schedule less than 5 months from mobilization to de-mob Tight Budget

What is GTR

GTR= Gas Thermal Remediation

Propane/Natural gas/Diesel as fuel to heat the thermal conduction heater wells.

Soil and groundwater are heated indirectly through conduction. Treatment temperatures from ~100°C to >400°C.

> Vaporized contaminants collected from extraction wells are routed to the appropriate vapor treatment module.

Closed-loop in-situ thermal conduction heating system. No pollution emission into atmosphere.

Heaters Safety

Industrial requirement: 0.8MPa ; Business requirement: 0.4MPa ; Residential requirement: 0.1~0.2MPa

3.4 Kpa

0.5~2 Kpa 0.074 KW

Fuel source

Propane Tanks

Natural Gas Pipe

In Situ GTR =

In Situ Heating

+Vapor Extraction and Treatment

ISTR installation Site Preparation and sheet pilling

GEO

Sheet pilling

ISTR installation Drilling and Well Displacement

0 0 0 0 0 0 34 35 36 37 38

2-5

2-7

0 ¹¹³ 0 3-9 3-10

2-9 o 2-10

Scale In Meters

ISTR installation **Plumbing and Well Connecting**

GEO Remediation Company

Environmental

ISTR installation Vapor Treatment System Connecting

Remote Monitoring System

Heating wells thermal picture

Recorded Temperature Evolution

Computer Simulated Water Removal with Temperature Evolution

Computer Simulated COCs Reduction with Temperature Evolution

COCs concentration (mg/kg) at A-A' cross section after 0 days heating

Dinitro-Toluene

Soil Concentration Sampling during Treatment

DADI BENESOUR CE

Results

All soil sampling results suggested remediation goals were achieved in proposed duration

Results

All groundwater sampling results suggested remediation goals were achieved in proposed duration

Groundwater	Pre-treatment	Post-treatment	Remediation
sampling	(µg/L)	(01/19/2016)	goal (µg/L)
2,6-dinitro-toluene	33.3	ND	51
2,4-dinitro-toluene	20.6	ND	58
o-toluidine	28,400	ND	430
DCE	29,800	ND	190
Vinyl Chloride	207	ND	23
5-nitro-o-toluidine	313	ND	3,350
TPH	24,622	60	2420

GE

Soil before Treatment

Soil after Treatment

GW before Treatment

GW after Treatment

Results

Soil bearing test suggested the soil property was not changed during thermal treatment

	0.11	CI	PT	Bearing capacity	
	Soil type	q _c (MPa)	f _s (kPa)	(kPa)	
Pre-	Silty clay	0 546	10.2	73	
treatment	Sifty Clay	0.540	10.2	13	
Post	Siltry alory	0 600	12	20	
treatment	Sitty Clay	0.008	13	00	

Why GTR: more soil types

 $q''_{x} = -k(dT/dx)$ Where: $q''_{x} = \text{heat energy flux in the x direction (W*m^{-2})}$ $k = \text{thermal conductivity (W*m^{-1}*K^{-1})}$ $dT/dx = \text{temperature gradient in the x direction (K*m^{-1})}.$

Thermal Conductivity

Hydraulic Conductivity

$$\frac{Clay}{Sand} = \frac{1.3}{0.52} = 2.5$$

$$\frac{Sand}{Caly} = \frac{10^4}{10^{-4}} = 100,000,000$$

Why GTR: less time

Duration for Different remediation technology

In Situ Remediation	Thermal	Chemical injection	flushing	Bio- remediation	pump and treat
VOCs (Benzene, DCE, ect)	1~2	3~9	4~12	6~18	12~24
VOCs (BTEX, TCE,PCE,gasoline,partial diesel, ect)	1~3	4~12	6~18	12~24	12~36
SVOCs (motol oil, MPG, PAHs, PCBs, dioxins,etc)	2~6	6~18	9~24	12~36	18~54

Why GTR: better guarantee

(2) One Challenge Encountered - Vapor Treatment

5 Case Studies in China

Environmental Company

Short Duration (2 months from mob to demob)

- 10/08/2013 Mobilization and Installation
- 11/03/2013 Commissioning
- 11/05/2013 Start Heating
- 12/08/2013 Stop Treatment
- 12/12/2013 Confirming Sampling

Environmental Company

Reach 100°C in less than 1 month
 Removed >99% of COCs from soil and groundwater

Vapor treatment unsuccessful reason:

(1) No Time(2) No Site Investigation

Vapor treatment need improvement:

(1) Same problem: Unexpected significant higher VOCs concentration than provided site investigation report
(2) Failure of some small parts of local equipment

Vapor treatment need improvement:

One unreported chemical: Sulfide

Some adjustment done for this site immediately

Vapor Treatment Development

(1) Cooling(2) VGAC polishing

(1) Cooling(2) Therm oxidation(3) VGAC polishing

(1) Cooling(2) C3(3) VGAC polishing

(1) Cooling(2) GTR-O(3) VGAC polishing

(1) Cooling(2) Catalytic oxidation(3) VGAC polishing

Method 1: Cooling+VGAC

Good for SVOCs sites or low VOCs concentration sites

GEO

Vapor Treatment Development

(1) Cooling(2) VGAC Polishing

(1) Cooling(2) Therm Oxidation(3) VGAC Polishing

(1) Cooling(2) C3(3) VGAC polishing

(1) Cooling(2) GTR-O(3) VGAC polishing

or

(1) Cooling

- (2) Catalytic Oxidation
- (3) VGAC Polishing

Method 2: Thermal Oxidizer

Method 2: Thermal Oxidizer

- Chlorinated solvents < 5,000 ppmv</p>
- petroleum hydrocarbons <10,000 ppmv</p>
- Potential formation of dioxins and furans and untreated VOCs
- > CO, CO2, and nitrogen / sulfur oxides
- Uptime is low = high O&M costs
- Supplemental fuel costs are rising
- Scrubber maintenance costs are high
- Moderate carbon footprint can be high

Method 3: Catalytic Oxidizer

Method 3: Catalytic Oxidizer

- Chlorinated solvents < 2,000 ppmv</p>
- petroleum hydrocarbons <4,500 ppmv</p>
- Potential formation of dioxins and furans and untreated VOCs
- > CO, CO2, and nitrogen / sulfur oxides
- Uptime is low = high O&M costs
- Supplemental fuel costs are rising
- Scrubber maintenance costs are high
- Moderate carbon footprint can be high

Vapor Treatment Development

- (1) Cooling(2) Therm Oxidation(3) VGAC Polishing
- (1) Cooling(2) C3(3) VGAC polishing

(1) Cooling(2) GTR-O(3) VGAC polishing

or

(1) Cooling

- (2) Catalytic Oxidation
- (3) VGAC Polishing

GEO

Method 4: C3

Refrigerated cooling compression and condensation combined with regenerative adsorption
 NO UPPER LIMIT of VOC concentration
 NO INLET DILUTION!
 >100 projects completed
 >20,000,000 pounds of VOCs treated
 >28 years in service!

Method 2-4: which methods

Environmental Remediation Company

GE(

Method 2-4: which methods

GE

Method 4: C3 application in Thermal remediation

Camp Pendleton, CA

Method 4: C3

Flow Rate	100 SCFM Pilot test unit	200 SCFM	300 SCFM	500 SCFM
Power	480 VAC 3-ph 100 A & 240 VAC 70 A	480 VAC 3-ph 150 A & 240 VAC 70 A	480 VAC 3-ph 200A & 240 VAC 70 A	480 VAC 3-ph 300 A & 240 VAC 70 A
KVA/Hr	45 KVA	75 KVA	105 KVA	170 KVA

Vapor Treatment Development

or

(1) Cooling

(2) Catalytic Oxidation

(3) VGAC Polishing

GEO

Method 5: GTR-O (Case #3)

Used GTR as Oxidzer

Environmental

Method 5: GTR-O (Case #3)

800C ~300C
 Retention time is double of most thermal oxidizer
 VOCs from >15,000 ppmv to 120 ppmv

Method 5: GTR-O Case #4

Method 5: GTR-O

Case #4

3-methyl-6-nitrophenol

Method 5: GTR-O

Case #5

GTR-O: simultaneously heating the ground and treating vapor

Method 5: GTR-O

Case #5

Questions?

http://www.georemco.com/

+1.714.283.1682 ask@georemco.com Jason@georemco.com

