Tools for Monitoring Contaminant Biodegradation When Combined with Colloidal Activated Carbon

Ashley Cedzo

Kristen Thoreson, Ph.D., Stephanie Rittenhouse, Craig Sandefur and Jeremy Birnstingl, Ph.D.- Regenesis

Dora Taggart- Microbial Insights

This presentation is the property of REGENESIS Remediation Products and its owner. You may not publish, transmit, reuse or re-post the content of this presentation for public or commercial purposes, including, without limitation, text, images and related content made available to you without the expressed permission of REGENESIS Remediation Products. REGENESIS® Land Science Technologies

Overview

- FAQs: PlumeStop Liquid Activated Carbon
 - 1. Are adsorbed contaminants bioavailable?
 - 2. How can we know biodegradation is occurring?
- Proof of concept biodegradation demonstrations
 - Column study
 - Microcosm
 - Dual porosity tank study
- Field examples

PlumeStop[®] Liquid Activated Carbon[™]

Colloidal remediation agent

- Non-toxic, black "ink"
- 1-2 micron activated carbon
- polymer/sorbent/additives
- Patented formulations and methods

PlumeStop[®] Liquid Activated Carbon[™]

Goals:

- Decrease the remediation footprint
- Increase the residence time of contaminants in the reactive zone

Key questions:

- Are adsorbed contaminants bioavailable?
- What tools can we use to
 monitor biodegradation?

Monitoring Biodegradation: VOC Concentrations

ERD Treatment:

PlumeStop + ERD:

Schaefer et al. Chemosphere, 75, 2009, 141-148.

Monitoring Biodegradation: Multiple Lines Of Evidence

Need to heighten our awareness to other indicators

- Are the conditions right?
 - Geochemical parameters: TEAs, ORP, DO, etc.
- Biodegradation products
 - Ethene, trace intermediates?
- Microbial Indicators
 - Are the right bacteria present?
 - At useful concentrations?

Important to monitor these parameters over time -> trends

Proof of Concept: Laboratory Studies

> Are sorbed contaminants bioavailable?

Expt 1: Column study

• Evidence for sorption + biodegradation

Expt 2: PCE Microcosm studyConfirmed contaminant destruction

Expt 3: Dual porosity tank studyBack diffusion solution

Expt 1: Column Study Set-Up

Column Conditions:

- 1. <u>Sterile Control</u>: No treatment
- 2. <u>Sterile PlumeStop</u>: Initial PlumeStop treatment
- 3. <u>Biotic PlumeStop</u>: Initial PlumeStop treatment & bioaugmentation with *Dehalococcoides*, on-going lactate

Continuous TCE flow through all columns: 1-2 mg/L

Expt 1: Column Study Results

Technologies

Expt 1: Column Study Results

Expt 1: Conclusions

- TCE @ ND throughout experiment
 - Ethene throughout experiment
- Confirmed no inhibition on biodegradation from presence of colloidal activated carbon

Proof of Concept: Laboratory Studies

- Expt 1: Column study
- Evidence for sorption + biodegradation
- Expt 2: PCE Microcosm studyConfirmed contaminant destruction
- Expt 3: Dual porosity tank study
- Back diffusion solution

Expt 2: PCE Microcosm Set-Up

Conditions:

- 1. <u>Sterile Control</u>: no treatment
- 2. <u>Sterile PlumeStop</u>: 50 mg/L PS
- 3. <u>Biotic PlumeStop</u>: 50 mg/L PS, DHC, lactate

Contaminant Loading:

• 10 mg/L PCE spiked every two weeks

Measurements:

- Dissolved phase PCE
- Total mass PCE across all phases (extraction)

Sterile PlumeStop: No destruction, mass retained

Biotic PlumeStop: PCE is destroyed

REGENESIS

Expt 2: Conclusions

Demonstrated:

- Regeneration cycle
 - 4 rounds of sorption and biodegradation
- Sustained treatment of PCE mass "flux"
 - Low GW levels throughout expt
- Definitive contaminant destruction
 - Confirms contaminant bioavailability

Proof of Concept: Laboratory Studies

- Expt 1: Column study
- Evidence for sorption + biodegradation
- Expt 2: PCE Microcosm study
- Confirmed contaminant destruction
- Expt 3: Dual porosity tank study
- Back diffusion solution

Expt 3: Dual Porosity Tank Study

Collaboration with:

- Kevin Saller, CDM Smith
- Tom Sale, Colorado State University

Colorado

Investigators in a SERDP funded project: "Treatment of Contaminants in Low Permeability Zones"

 Used this tank set-up to simulate back diffusion and evaluate different remediation treatments (SERDP Project ER-1740)

Our study goal:

 Compare the performance of a PlumeStop treatment under similar test conditions to ERD REGENESIS*

Back Diffusion

Biological PLUME STOP[®] Recoverable mass ↓ clean-up standard Back diffusion time

Expt 3: Dual Porosity Tank Study Procedure

- 1. "TCE Spill"
 - a. TCE saturated water flowed through tanks (~12 PV)
- 2. Back diffusion:
 - a. Influent switched to clean water until effluent TCE <5 mg/L
- 3. Inject remediation treatments

Expt 3: Conditions Tested

- Tank 1Control, no treatment
- Tank 2PlumeStop only
- Tank 3ERD Treatment>Lactate + DHC
- Tank 4Biotic PlumeStop≻PlumeStop, lactate, DHC

Expt 3: Analyses

- Effluent samples collected throughout experiment for VOCs
- qPCR analysis of water and soil upon completion of experiment

Expt 3: Tank Effluent Results

REGENESIS® Land Science Technologies

Expt 3: Tank Effluent Results

Expt 3: Tank Effluent Results

PlumeStop Transport

Tank 2: PlumeStop only Tank 4: PlumeStop + bio where a strend and a strend and the

Noticeable penetration into low k zones

Land Science

Technologies

Expt 3: qPCR Data - Soil

No detectable DHC on soil in tanks that were not bioaugmented

Expt 3: qPCR Data - Soil

Over 2 orders of magnitude DHC population increases in presence of PlumeStop

Expt 3: Dual Porosity Tank Study Conclusions

Demonstrated:

- Improved containment of back diffusing contaminants over ERD treatments alone
- Minimal daughter products
- Orders of magnitude increase in *Dehalococcoides* + functional genes populations with PlumeStop

Case Study - Introduction

- No Daughter Products (since 2001)
- No Detected Dehalogenating Bacteria
- No Attenuation
- Sandy Aquifer
 10 m/yr GW Flow

REGENESIS® Land Science Technologies

Contaminant Concentrations

REGENESIS®

Dehalococcoides

REGENESIS[®]

Electron Donor Concentration

REGENESIS®

Daughter Products

REGENESIS®

Case Study - Conclusions

- Effective Adsorption and Biodegradation
 - Dehalococcoides is an Obligate Halorespiring Microbe
 - Dehalococcoides Decreased when e⁻ Donor was Consumed
 - Daughter Products Detected after Low Concentration
 of Dehalococcoides
- Microbial Monitoring Critical after PlumeStop®
 - Daughter Products Not Detected during Biodegradation
 - Daughters Only Detected after Biodegradation Slowed

Summary

- Monitoring biodegradation with a PlumeStop application requires the use of multiple indicators
- Laboratory experiments confirm the bioavailability of adsorbed contaminants

Ongoing Research

- Sorption + biodegradation is a continued focus of REGENESIS R&D
- Improved predictions & designs
- Goal: Success at your site
- Collaborations
- Internal research efforts

Thank you!

Ashley Cedzo Northwest District Technical Manager Bend, OR acedzo@regenesis.com

