


Development of a New Sustainable Thermal Remediation and Recovery Technology Using Low Energy Rapid Exothermal Reaction Technique

REMTECH 2016

October 12, 2016
Jevins Waddell, P.Tech.(Eng.)

TRIUM - "Innovation Executed"

- Proprietary products & services
 - □ Chemical Oxidation (ChemOx®)
 - Soil and groundwater remediation
 - \square Low Temperature Thermal (T-REXTM)
 - Soil, sludge and hazardous waste remediation
 - Metals Soil Stabilization (T-SSTM)
 - Soil, sludge and sediment stabilization of heavy metals

AGENDA

- Background Thermal Remediation
- Development Principles of "Thermal Reaction Enhanced Extraction" (T-REX™)
- Protocol and Performance
- Future Development

Thermal Treatment Industry

High Temp Thermal Treatment

Incineration

Plasma

Pyrolysis

Low Temp Thermal Desorption

Thermal Desorption

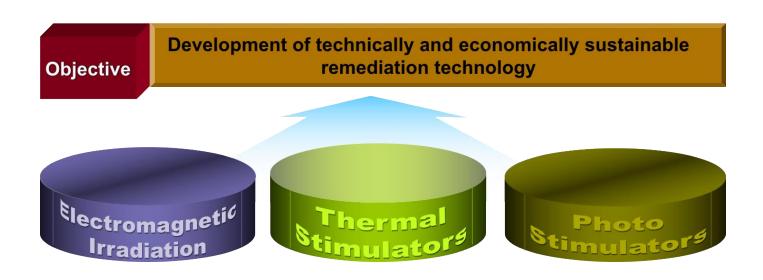
Geo Thermal (In-situ Heating)

Low Energy Alternative Heating

Microwave

Induction

Ground Cover



Development Concept

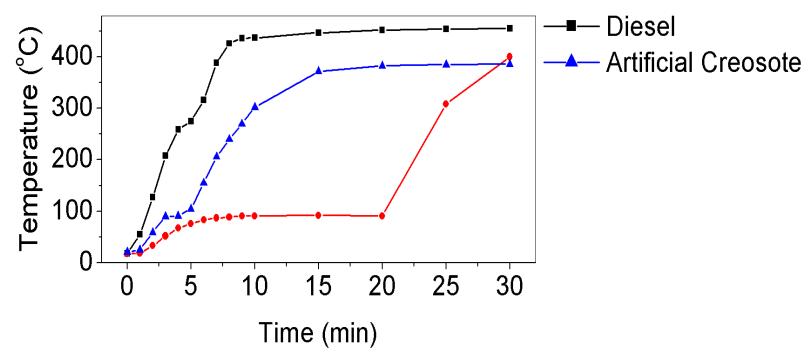
- Reduce Increase efficiency "inside and out"
- Recover Functional reusable soil
- Recycle Contaminant recovery

Fundamentals of T-Rex

Low energy, rapid thermal heating and nano-scale chemical stimulation technique for enhanced organic contaminant extraction.

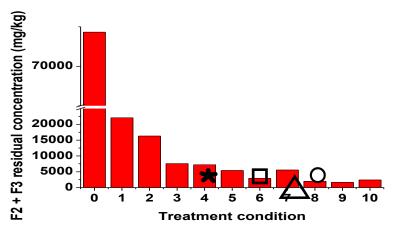
- ✓ Exothermic reactions for
 - ✓ Pressure
 - ✓ Cracking
 - ✓ Extraction

Proof of Concept



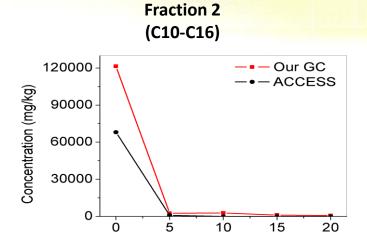
Concept Performance

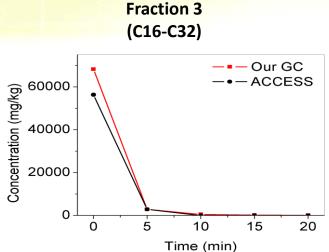
- Accelerated Thermal Capacity
 - □ Two stage heating process



Blending Optimization

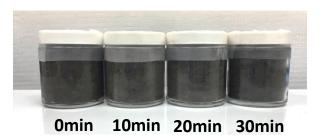
	Treatments		Residual Conc.	
Condition	T-Rex composite	Time (min)	F2 (C10-16) + F3 (C16-32) (mg/kg)	Removal rate (%)
0	0	0	74327	100
1	0	15	22098	70.3
2	0	20	16309	78.1
3	Composite I	15	7559	89.8
4	Composite II	15	7208	90.3
5	Composite III	15	5417	92.7
6	Composite IV	15	2914	96.1
7	Composite V	20	5558	92.5
8	Composite VI	20	1978	97.3
9	Composite VII	20	1665	97.8
10	Composite VIII	20	2399	96.8





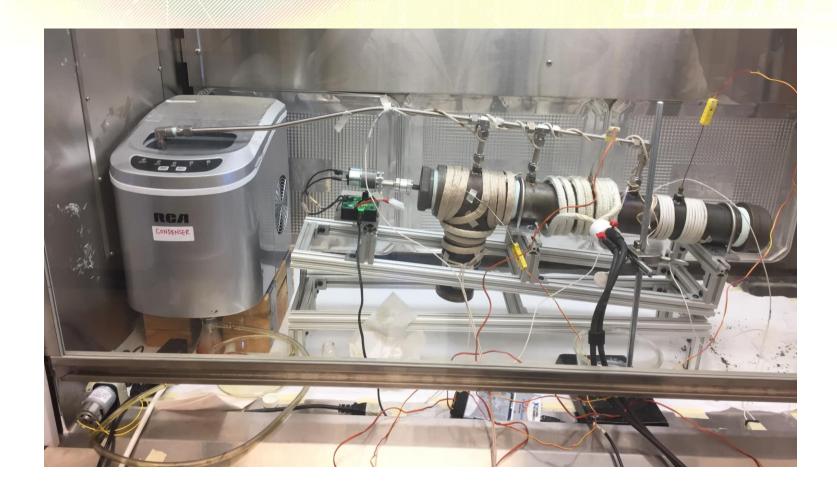
Concept Performance

Diesel

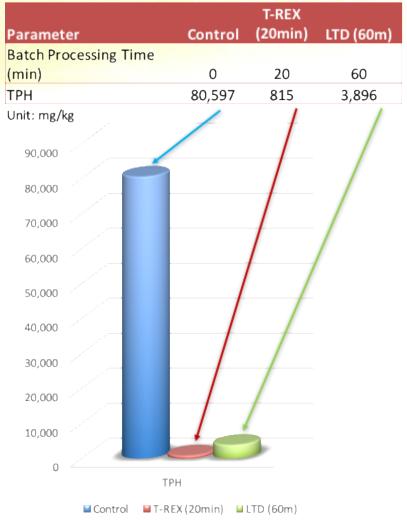


Total Organic Carbon

Time (min)


- Before = 6.3%
- □ After = 5.7%

Lab Prototype



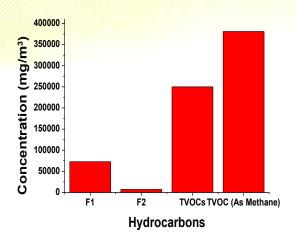
Prototype Performance

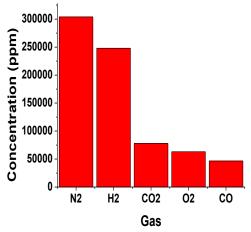
- High concentration process comparison
- Refining process parameters
 - □ Retention time
 - □ Pressure
 - □ Temperature
 - □ Vapour capture

Vapour Recovery

- Vapour Recovery
 - □ >50% by wt. recovery
 - □ Opportunity for improvement

10% Diesel in Sand / 300 °C					
Description	Component	Concentration (mg/kg)	Total Concentration (mg/kg)	Removal Percentage (%)	
Defens to a tour and	F2	67174	110334	0	
Before treatment	F3	43160			
After treatment	F2	4634	6831	93.8	
	F3	2197			



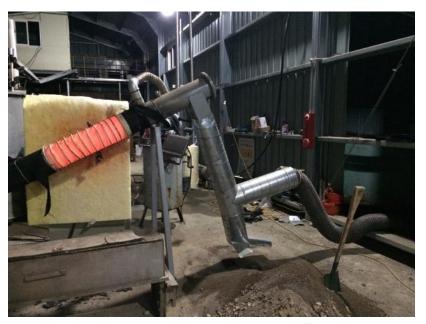


Vapour Characterization

Table 1. Volatile Organic Compounds (Air)				
Benzene	2650	ppm(V)		
Ethylbenzene	451	ppm(V)		
Toluene	2580	ppm(V)		
Xylenes	1460	ppm(V)		
F1-BTEX	72800	mg/m3		
F2	7050	mg/m3		
Sum	86991			

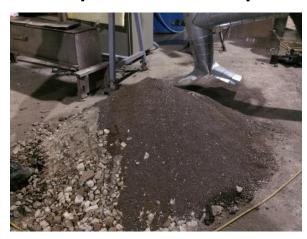
Table 2. TVOCs amounts		
TVOCs	250000	mg/m3
TVOC (As Methane)	381000	ppm(V)

Field Prototype - S. Korea



Field Prototype Test Parameters

- 0.5 Ton/hour
- <20 min SRT</p>
- 1% Diesel and 4% Lube Oil Tests



Field Prototype Observations

- >200°C activation increase, audible
- No visible difference with control in diesel test
- Significant removal difference in lube oil test
 - ☐ Visible in control, not in T-REX.
 - □ Sample results pending

Future Development Scope

- Patent filed September 2016
- Currently operating field system to establish engineering and economics aspects
 - Additional tests conducted for considerations for efficiency / metallurgical / heat transmission in a large scale operations
 - □ Lower temperature activation
 - Vapour collection
 - □ Commercialization in 2017
- Lab scale process testing & design of in-situ T-REX treatment

Acknowledgement

- National Research Council, Industrial Research Assistance Program (NRC-IRAP)
- MEDAL, Mechanical & Manufacturing Engineering, University of Calgary
- Korea Soil Remediation Company (KSR)
- Alberta Innovates Technology Futures
- Can Export
- CETAC-West

www.triuminc.com

Locations

Cochrane (HQ) / Edmonton / Drayton Valley

International
USA / S. Korea / Middle East / China / Taiwan

