

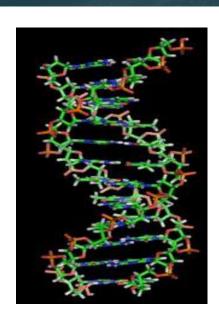
Environmental DNA (eDNA)

A Revolutionary Sampling Technique for Aquatic Ecological Studies

By: Elizabeth Vincer, MRM, P.Ag., Ecologist

RemTech

October 14, 2016

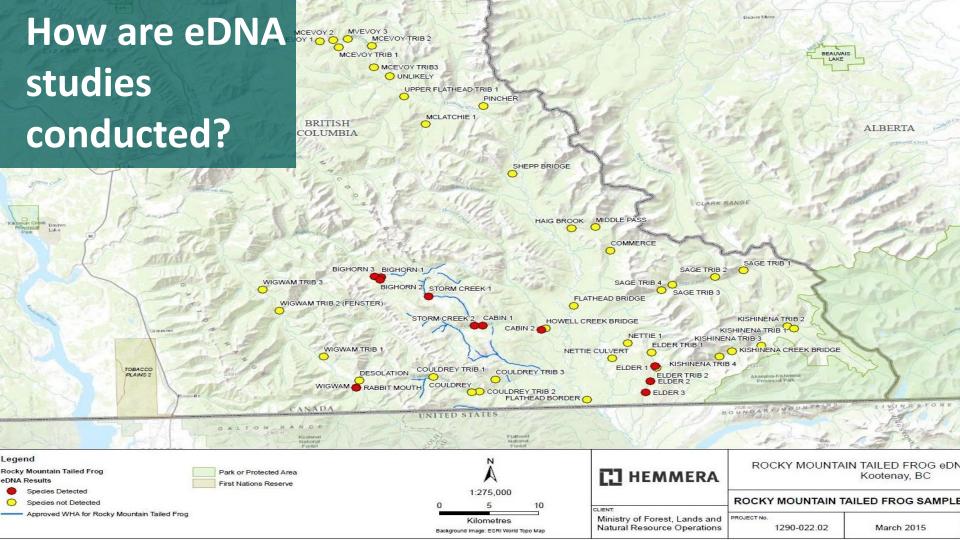


Current Applications

Potential Applications

The Basics

- **Deoxyribonucleic acid** (DNA) molecules carry an organism's genetic information.
- Base pair sequences are unique between organisms: these differences provide a unique way to identify species, populations and individuals.
- The use of mitochondrial DNA is preferred as it's more abundant than nuclear DNA

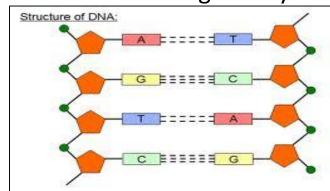

What is eDNA

Environmental DNA (eDNA)

Relies on the detection of naturally occurring genetic materials that can be collected from the environment, including:

- gametes
- dead skin cells
- feces, urine, saliva
- egg plasma

Step 1 – Primer Design


A good primer will contain an inclusive consensus sequence that incorporates all within-species variability for a species in a well-known sequence of DNA.

Primers can be reviewed against sequences published in GenBank or against sequences obtained from tissue samples of target and co-occurring closely

related species.

 Primers need to incorporate the full range of genetic variation for the target species to avoid false negatives.

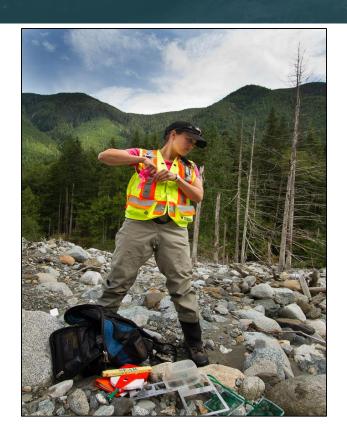
 Primers need to incorporate the full range of genetic variation for closely related, cooccurring species to avoid false positives.

Step 1 – Primer Design

Primer development requires a comprehensive screening process to exclude sympatric species and prevent false positive detections.

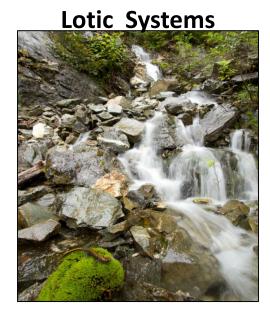
Target Taxa: Red-legged frog

Sympatric Taxa: LICL, LICA, RAPR, PSRE



Step 2 – Sample Collection

Collect water samples from your target system.


Depending on your target species and the habitat types, you need to consider the following:

- 1. Volume of water
- 2. Number of replicates
- Collection timing

Survey Design Considerations

Consider sampling requirements for the study area.

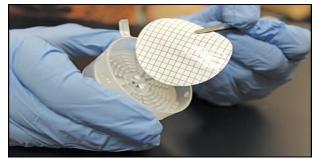
Study Design Considerations

Know the species' life history

• Is there a permanently aquatic life history phase...

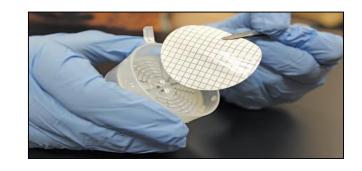
...or does your target taxa tadpole mature in three days, or 6 years?

Step 2 – Sample Collection


Collect water samples from the study area.

Step 3 - Filtering

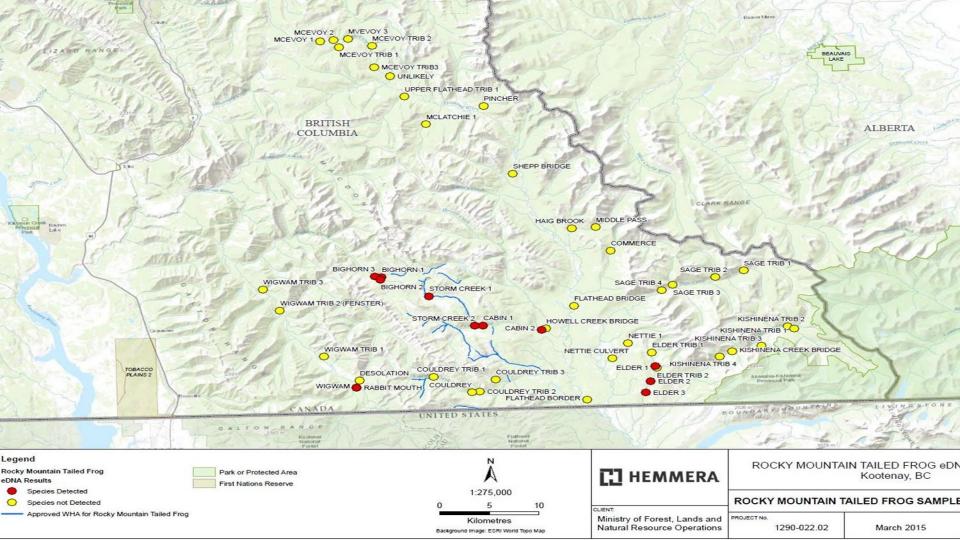
- Unless filtering in the field samples must be stored in a refrigerator prior to filtration.
- Samples are filtered through a membrane using a peristaltic pump.
- Once filtration is complete, the membrane can be frozen or dehydrated in vials with molecular-grade ethanol*.



Step 4 – Genetic Testing

Hemmera works collaboratively with **Dr. Caren Goldberg** – WSU and with **Dr. Caren Helbing** – UVic.

 eDNA extractions and qPCR setups should be conducted in a PCR-free laboratory space where concentrated (such as from tissue) DNA samples have not been handled.



 Thermocyclers and real-time PCR machines should be located outside of this space.

Type 1 & Type 2 Errors

- Type 1 error: false positive detection
- Type 2 error: false negative detection
- Replicate samples are required to estimate occupancy while accounting for uncertainty
- Include known presence sites in study design to measure efficacy.
- Distilled water can be used (lab blind-test) to control for contamination during both the filtering process and during lab-testing.
- Clean field procedures are required to decrease risk of sample contamination

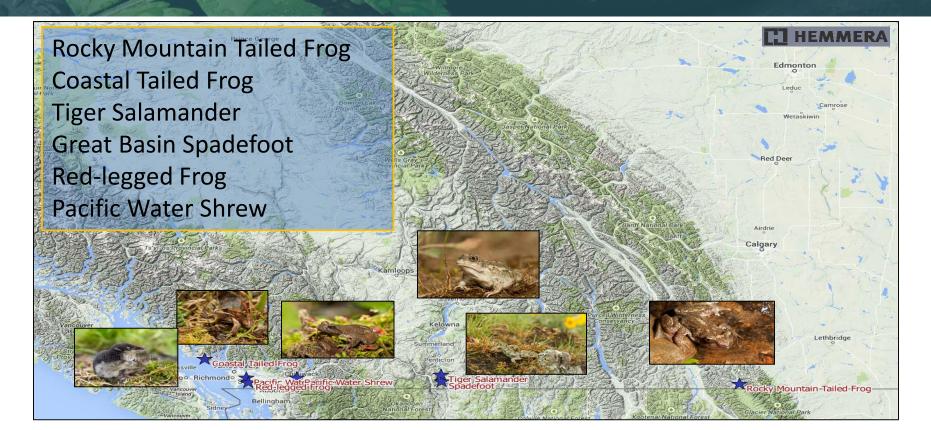
Limitations of eDNA

What eDNA can tell us today (binary answer):

 If the target taxa was present at the site during, or immediately prior to, the time of sampling

What eDNA won't tell us (yet?); Abundance:

- Target taxa abundance and density
- Duration and frequency of habitat use
- Precise physical proximity of target taxa (hard to define transport potential)



Hemmera and eDNA

Hemmera: Current and Completed BC Projects

Hemmera: Current and Completed Yukon Projects

Yukon researchers unlock way to track salmon by their DNA

Scientists can detect traces of poop, mucus and skin up to 3 weeks after fish swim past

Current Alberta eDNA Projects

- 11:30 Waterton Lakes National Park Rocky Mountain Tailed Frog eDNA Survey (Kim Pearson, Parks Canada).
- 11:45 Detection of Three Species of Amphibian in NW Alberta Using eDNA (Kris Kendell, ACA)
- 12:00 Laboratory Protocols for Detecting Northern Leopard Frog eDNA (Brian Eaton, AI-TF)

Standard Operating Procedures

In 2015 we developed a provincial standard protocol document for the BC Ministry of Environment for application by other eDNA practitioners in BC and beyond.

Current Applications

- eDNA facilitates early detection and monitoring for management of:
 - Species of regulatory concern
 - Pathogens
 - Invasive species

Useful for early detection of invasive species.

"Some intensive eradication programs for invasive species fail when a few surviving individuals recolonize the ecosystem. eDNA methods may provide a means of confirmina eradication of all invaders" (USGS 2012

Future Expanded Application

Hemmera was the first to apply eDNA in a commercial (non-academic) setting in western Canada, and we're excited by its potential to:

- Inventory for an increasing number of Species at Risk
- Assess effectiveness of restoration programs
- Support environmental assessment processes
- Assess effectiveness of control programs for invasive species

Existing Primers

Common name	Scientific name
Amphibians	
Rocky mountain tailed frog	Ascaphus montanus
Northern red-legged frog*	Rana aurora
Great Basin Spadefoot*	Spea intermontana
Tiger salamander*	Ambystoma mavortium
Columbia spotted frog	Rana luteiventris
Northern leopard frog	Lithobates pipiens
Western toad	Anaxyrus boreas
Coastal giant salamander	Dicamptodon tenebrous
Oregon spotted frog	Rana pretiosa
Cascades frog	Rana cascadia
Long-toed salamander	Ambystoma macrodactylum
Fishes	
Chinook salmon	Oncorhynchus tshawytscha
Lake trout	Salvelinus namaycush
Bull trout	Salvelinus confluentus
Brook trout	Salvelinus fontinalis
Mammals	
Pacific Water Shrew*	Sorex benderii

^{*} Hemmera developed and maintains IP.

Requested Primers

Common name	Scientific name
Fishes	
Dolly Varden	Salvelinus malma
Least Cisco	Coregonus sardinella
Pygmy whitefish	Prosopium coulterii
Arctic grayling	Thymallus arcticus
Aquatic Invasives of Concern	
Didymo	Didymosphenia geminata
Zebra (dreissenid) mussels	Dreissenidae
New Zealand Mud Snail	Potamopyrgus antipodarum
Water Weeds	Elodea spp.
Eurasian Milfoil	Myriophyllum spicatum
VHSV	Viral hemorrhagic septicemia virus
Myxosporean parasite	Myxobolus cerebralis
Fanwort	Cabomba sp
Spiny Water Flea	Bythotrephes longimanus
Goldfish	Carassius auratus
Rainbow Trout	Oncorhynchus mykiss
Arctic Char	Salvelinus alpinus
Threespine Stickleback	Gasterosteus aculeatus
Silver Carp	Hypophthalmichthys molitrix
Northern Snakehead	Channa argus
Rusty Crayfish	Orconectes rusticus
Invertebrates	
Rocky Mountain Ridged Mussel	Gonidea angulata

When to use eDNA: CBA

CBA that neglects full consideration of each of these methodological attributes may be misleading.

Attribute	Conventional Methods	eDNA
Efficacy	Low-High	High
Multi-species	No	Yes
Retro-active addition of taxa	No	Yes
Adaptive design/testing	No	Yes
Observer and detectability bias	High	Low
Permitting required	Yes	No
Invasiveness	High	Low
Pathogen transfer risk	High	Low
Timing	Restrictive	Less Restrictive
Special equipment/training	Medium-high	Low
Safety considerations	Medium-high	Low
Abundance and proximity	Yes (with appropriate design)	No