

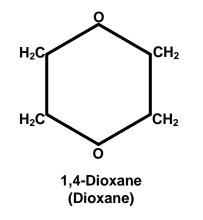
APPROACHES FOR EVALUATING NATURAL ATTENUATION OF 1,4-DIOXANE

October 13, 2016

RemTech[™] Banff, Alberta, Canada

Overview

- 1,4-Dioxane as an Emerging Contaminant
- Monitored Natural Attenuation of 1,4-Dioxane
- Advanced Characterization Approaches
 - 1. High resolution hydrostratigraphy/mass flux approach
 - 2. Microbial toolkit
- Case Studies
 - 1. Source mass and transport.
 - 2. High resolution characterization and advanced microbial tools
 - 3. Lesson learned
- Summary and Conclusions


1,4-Dioxane as an Emerging Contaminant

Emerging contaminant: Any synthetic or naturally occurring substance that is not commonly monitored in the environment, but has the potential to enter the environment and cause known or suspected adverse effects

1,4-Dioxane

- Highly soluble and stable in water
- Does not readily adsorb to organic material
- Can be stored by saturation of the static pore fraction

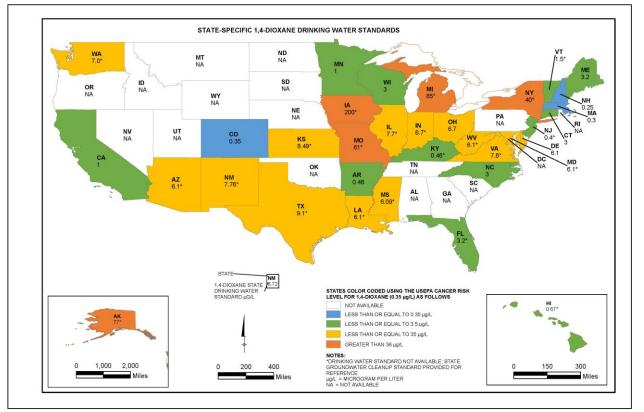
1,4-Dioxane: A potential health risk in water

Consumer products	Detergents	Paint/ dye/ grease		
Manufacturi	ng byproduct	Direct use		
Chlori	nated solvents (1,1,1	1-TCA)		
			Common stabilizer f chlorinated solvents	
5	85	mg/kg	6.5-24 mg/kg	
			1A	
VS			(Neither	Main ingredient: cellulose acetate membrane
Byproduct from deterg			gent production	production

Likely human carcinogen

- Short-term exposure: nausea, drowsiness, headache, and irritation of the eyes
- Chronic exposure: dermatitis, eczema, drying and cracking of skin, as well as liver and kidney damage
- U.S. risk-based drinking water heath advisory level of 200 µg/L

Detected in ~20% of public water supplies in the United States, ~7% exceed health-based standards.



Standards by State in the United States

- No federal MCL; many states do not have standards
- 30+ states with drinking water or groundwater standards
 - Many <1 μ g/L
 - Some have recently dropped to lower levels near analytical limits

More questions than answers:

- Are there enough studies done to establish basis for standard?
- Does science support the regulations? If it did, would we expect less variability in standard setting?
- Does fear of being wrong drive process?
- How long is too long to wait for science?

Management Strategies: Modest

		Drawbacks
	Appropriate when	 Causes a sense of
Reacting to	 No state regulations 	urgency
 Regulatory pressure 	in place	 Requires resources immediately
 Potential health risk 	 No human exposure risk 	 Options may be
 Reputational risk 	 Project goals include long-term strategies 	limited due to limited data

A modest approach may be appropriate in some cases, but not the status quo

Management Strategies: Proactive

		Benefits
Proactively	Appropriate whenSeveral sites are	 Understand risk within the portfolio;
 Evaluating sites within portfolio Determining presence of 1,4- dioxane when TCA/11DCE are present Collecting data sets over time 	 Several sites are managed Sites in different states are managed Reputation is a concern Project goals necessitate site closure 	 allocate resources accordingly Collect data in advance of regulatory pressure Build long-term data set for decision making (e.g., MNA) Optimize existing remedies

A proactive approach can provide more exit strategies in the long run

1,4-Dioxane Treatment Options

In-situ	 Chemical oxidation (ISCO) Natural attenuation/Bioremediation Thermal Extreme soil vapor extraction (XSVE)
Ex-situ/ Drinking Water	 Advanced oxidation processes (AOPs) Specialized synthetic media Bioreactor

1,4-Dioxane Treatment Options

In-situ	 Chemical oxidation (ISCO) Natural attenuation/Bioremediation Thermal Extreme soil vapor extraction (XSVE)
Ex-situ/ Drinking Water	 Advanced oxidation processes (AOPs) Specialized synthetic media Bioreactor

1,4-Dioxane Treatment Options

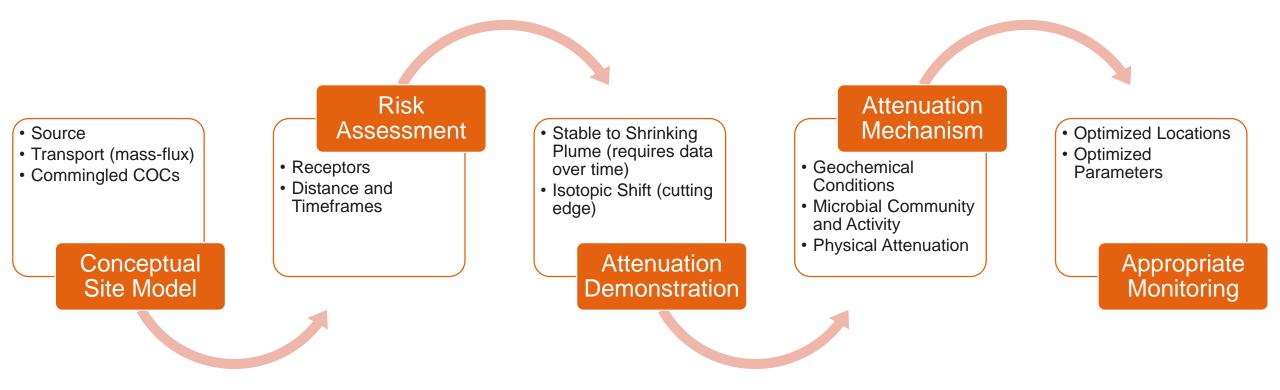
In-situ	 Chemical oxidation (ISCO) Natural attenuation/Bioremediation Thermal Extreme soil vapor extraction (XSVE)
Ex-situ/ Drinking Water	 Advanced oxidation processes (AOPs) Specialized synthetic media Bioreactor

Monitored Natural Attenuation of 1,4-Dioxane

Why Monitored Natural Attenuation?

Health & Safety	 No chemical handling or concentrate disposal No mechanical hazards
Cost	 ~20% of cost of AOP over 10 years After mechanism confirmation, monitoring cost optimized
Sustainability	 Efficient for large, dilute plumes Low energy intensity Compatible with site operations and remediation activities
Efficacy	 Lines of evidence demonstration

Basis for Approach: U.S. EPA's Three Tiers

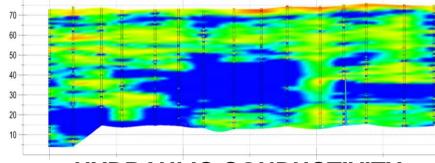

1. Clear trend of decreasing mass or concentrations over time (e.g., statistical trend analysis)

2. Indirect evidence of attenuation mechanisms (e.g., assessment of geochemical & hydrological conditions)

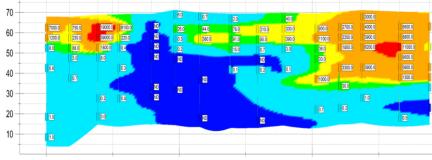
3. Direct evidence of attenuation mechanisms (e.g., environmental molecular diagnostic tools [MBT, CSIA])

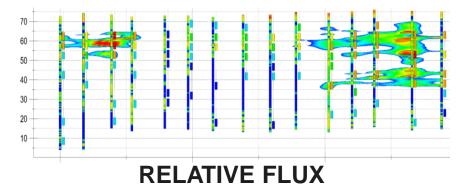
Lines of Evidence: A Path to Success

Lines of Evidence: A Path to Success



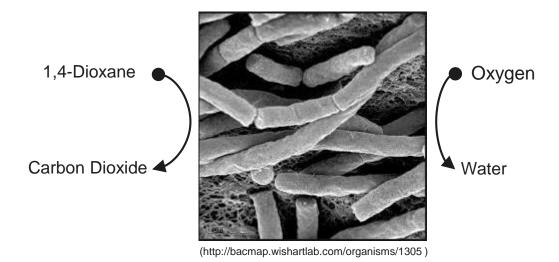
Advanced Characterization Approaches


- High resolution hydrostratigraphy and mass flux assessment
- Microbial toolkit

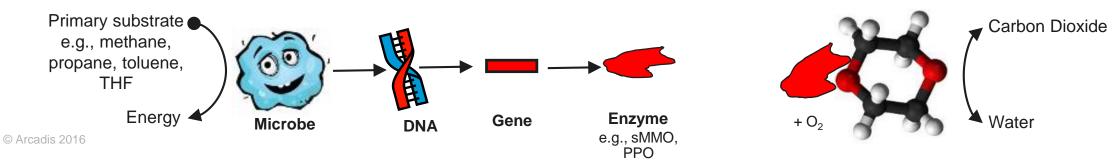

Value of High Resolution Characterization

HYDRAULIC CONDUCTIVITY

CONCENTRATION PROFILES


- Start with aquifer properties
 - Hydraulic Profiling Tool (HPT)
 - Cone Penetrometer Test (CPT)
- Layer on concentration information
 - Vertical Aquifer Profiling (VAP) samples
 - ✓ Whole soil data
- Visualize mass flux
 - Passive flux meters
 - 2D and 3D

>90% of contaminants often flow in <10% of aquifer volume



Biodegradation: Metabolism vs. Cometabolism

Metabolism: the goal is to produce energy

Cometabolism: a fortuitous side reaction

Assessing Biodegradation Mechanism

- Are the right microbes present?
 - Previously identified 1,4-dioxane degraders
 - Based on DNA surveys
- Do they have what they need to grow?
 - Primary substrates, comfortable conditions
- Are they expressing the enzymes needed?
 - mRNA for key functional genes
 - Particularly important for cometabolism

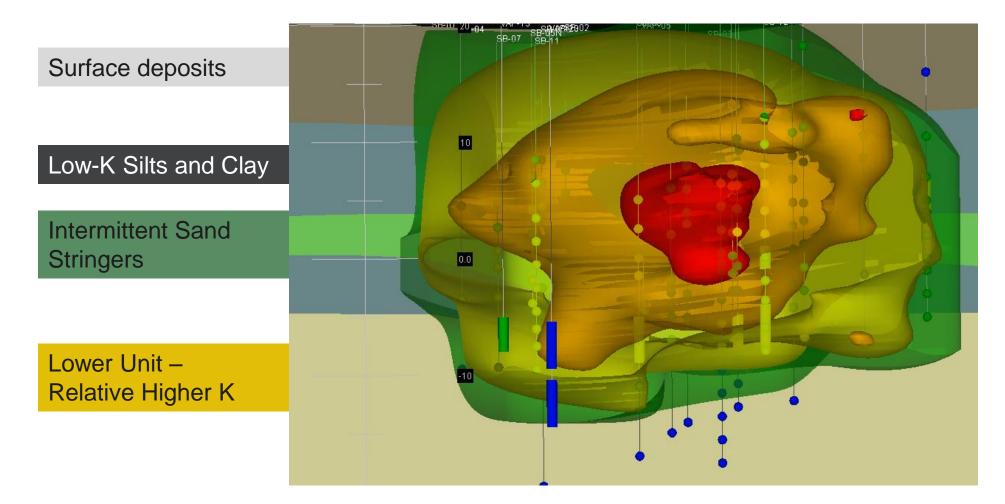
- Substrates: 1,4-Dioxane and DO
 - Genes: DXMO and ALDH

 Genes: SMMO, PPO, RMO/RDEG

Knowledge of processes and analytical methods are rapidly evolving

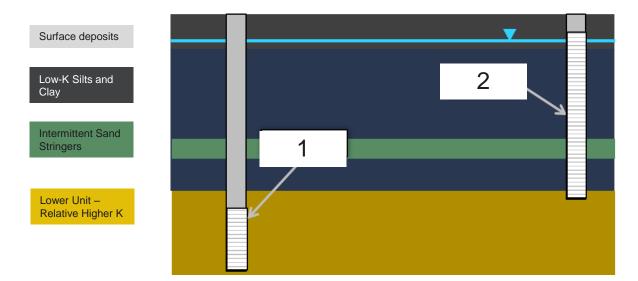
Case Studies

- 1. Where is the source mass? Where does transport occur?
- 2. High resolution characterization provides powerful insight; advanced microbial tools build a case for cometabolic 1,4-dioxane biodegradation
- 3. Lesson learned: multiple lines of evidence are needed for methanelinked cometabolism

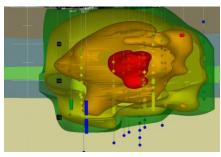


Case Studies

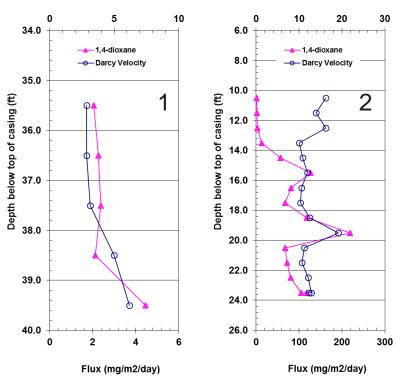
1. Where is the source mass? Where does transport occur?



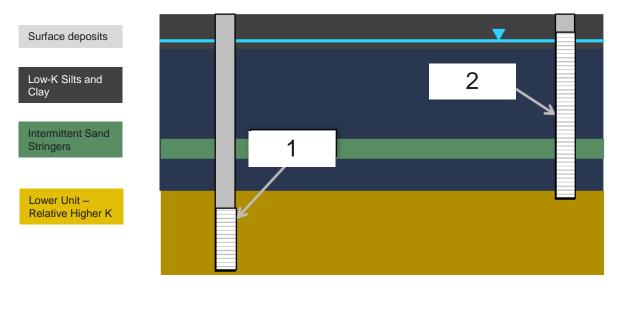
Where is the 1,4-Dioxane Source Mass?



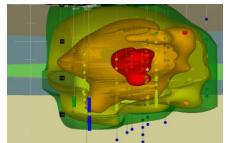
Where Does Transport Occur?

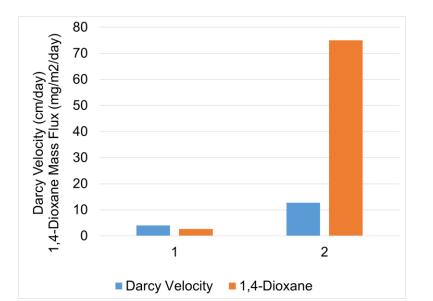


Mass Flux = Permeability x Gradient x Concentration


Darcy velocity (cm/day)

Darcy velocity (cm/day)

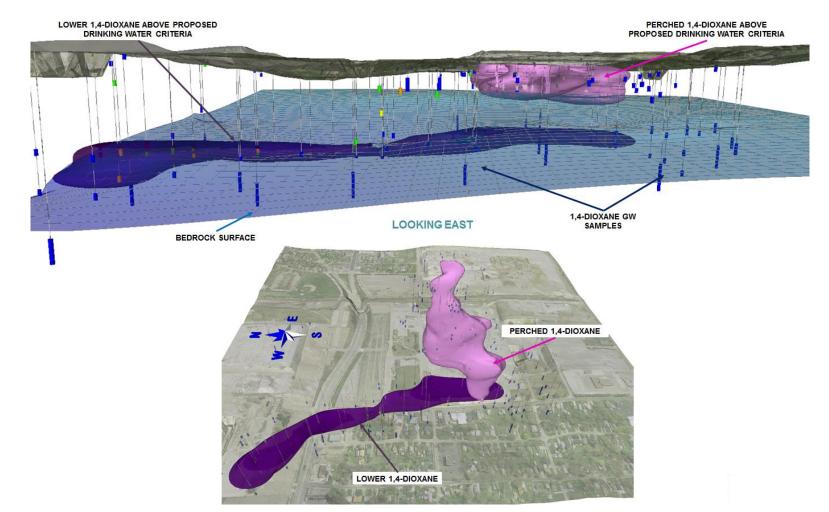




Where Does Transport Occur?

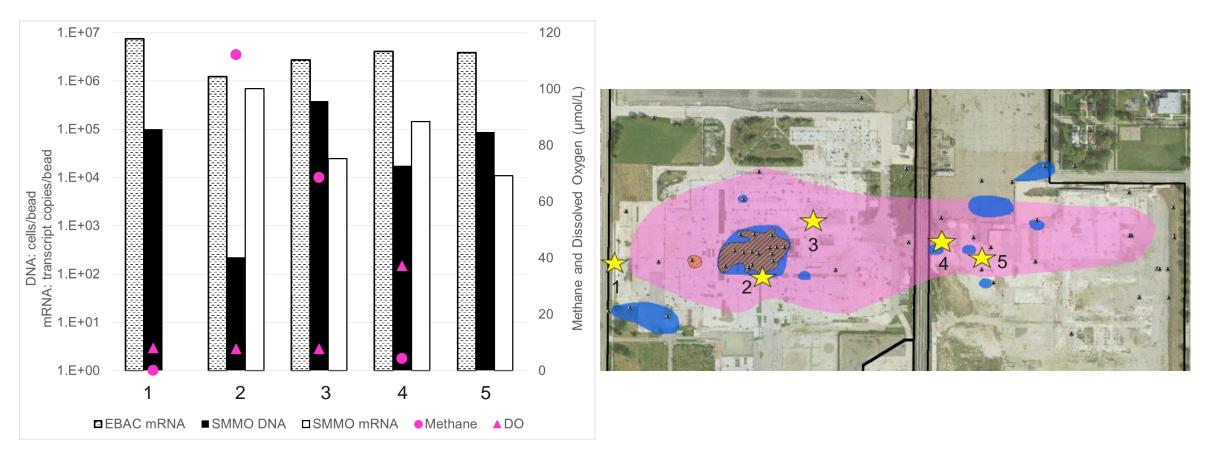
Mass Flux = Permeability x Gradient x Concentration

Understanding where 1,4-dioxane is and where it is going leads to appropriate treatment. Here that means ISCO and MNA combined.

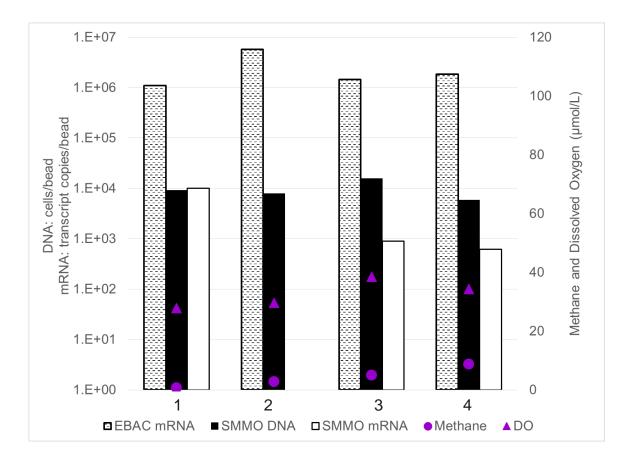


Case Studies

2. High resolution characterization provides powerful insight; advanced microbial tools build a case for cometabolic 1,4-dioxane biodegradation

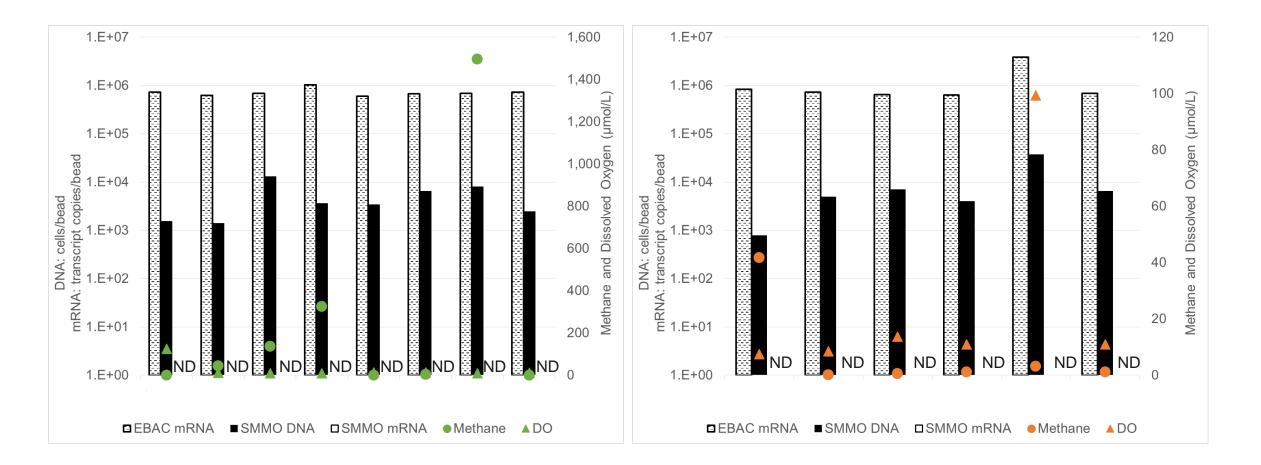


High Resolution Characterization - Powerful Insight into Plume Behavior



Upper Plume – Methane-linked Cometabolism

Lower Plume – Methane-linked Cometabolism



Case Studies

3. Lesson learned: multiple lines of evidence are needed for methanelinked cometabolism

Presence of SMMO Doesn't Prove Activity

Summary and Conclusions

- 1,4-Dioxane is an emerging contaminant
- A proactive management approach can be advantageous
- Monitored natural attenuation provides an attractive remedial alternative
- Advanced characterization approaches provide evidence needed to support a monitored natural attenuation approach
 - Understanding where mass is and where it is going is key
 - Microbial biodegradation is a viable remediation process
 - Requires multiple lines of evidence,
 - Nuanced understanding of cometabolic processes for demonstration