

Environmental Challenges BUSINESS SOLUTIONS ®

Groundwater Plume Analytics for Assessing Remediation Effectiveness

Joe A. Ricker, P.E.

© 2016 EarthCon Consultants, Inc. All rights reserved. This material may not be reproduced, displayed, modified or distributed without the express prior written permission of the copyright holder. www.earthcon.com

EarthCon Plume Analytics

Analytics is the discovery and communication of meaningful patterns in data. Especially valuable in areas rich with recorded information, analytics relies on the simultaneous application of statistics, computer programming and operations research to quantify performance. Analytics often favors data visualization to communicate insight.

- From Wikipedia, the free encyclopedia

© 2016 EarthCon Consultants, Inc. All rights reserved. This material may not be reproduced, displayed, modified or distributed without the express prior written permission of the copyright holder.

Presentation Overview

- Groundwater Plume Analytics
 - Ricker Method[®] Plume Stability Analysis
 - Spatial Change Analysis
 - Molar Data Analysis for Chlorinated Organics
 - Well Sufficiency Analysis

© 2016 EarthCon Consultants, Inc. All rights reserved. This material may not be reproduced, displayed, modified or distributed without the express prior written permission of the copyright holder.

Groundwater Plume Analytics Ricker Method[®] Plume Stability Analysis

© 2016 EarthCon Consultants, Inc. All rights reserved. This material may not be reproduced, displayed, modified or distributed without the express prior written permission of the copyright holder.

EarthCon Plume Analytics

Ricker Method® Plume Stability Analysis

- Methodology published in Groundwater Monitoring & Remediation 28, no. 4/ Fall 2008/pages 85–94
- Efficiently assimilates large volumes of historical data into a concise and meaningful analysis
- Empirical evaluation of plume stability metrics
 - Area
 - Average concentration
 - Mass
 - Center of mass
 - Plume spread of mass

© 2016 EarthCon Consultants, Inc. All rights reserved. This material may not be reproduced, displayed, modified or distributed without the express prior written permission of the copyright holder.

Groundwater Plume Analytics Spatial Difference Analysis

© 2016 EarthCon Consultants, Inc. All rights reserved. This material may not be reproduced, displayed, modified or distributed without the express prior written permission of the copyright holder.

BUSINESS SOLUTIONS®

BUSINESS SOLUTIONS®

Environmental Challenges BUSINESS SOLUTIONS ®

Environmental Challenges BUSINESS SOLUTIONS ®

Environmental Challenges

BUSINESS SOLUTIONS [®]

Groundwater Plume Analytics Molar Data Analysis for Chlorinated Organics

© 2016 EarthCon Consultants, Inc. All rights reserved. This material may not be reproduced, displayed, modified or distributed without the express prior written permission of the copyright holder.

Example 2: 100% PCE degrades to: 25% PCE; 25% TCE; 25% DCE; 25% VC

Original Concentration			Final Con	<u>centration</u>	
3.32 kg	PCE	20 mol	0.83 kg	PCE	5 mol
0.00 kg	TCE	0 mol	0.66 kg	TCE	5 mol
0.00 kg	DCE	0 mol	0.48 kg	DCE	5 mol
0.00 kg	VC	0 mol	0.31 kg	VC	5 mol
3.32 kg	_	20 mol	2.28 kg	_	20 mol

Example 2: 100% PCE degrades to: 25% PCE; 25% TCE; 25% DCE; 25% VC

Original Concentration			Final Con	<u>centration</u>	
3.32 kg	PCE	20 mol	0.83 kg	PCE	5 mol
0.00 kg	TCE	0 mol	0.66 kg	TCE	5 mol
0.00 kg	DCE	0 mol	0.48 kg	DCE	5 mol
0.00 kg	VC	0 mol	0.31 kg	VC	5 mol
3.32 kg		20 mol	2.28 kg		20 mol

Example 2: 100% PCE degrades to: 25% PCE; 25% TCE; 25% DCE; 25% VC

Original Concentration			<u>Fi</u>	Final Concentration		
3.32 kg	PCE	20 mol	0.	.83 kg	PCE	5 mol
0.00 kg	TCE	0 mol	0.	.66 kg	TCE	5 mol
0.00 kg	DCE	0 mol	0.	.48 kg	DCE	5 mol
0.00 kg	VC	0 mol	0.	.31 kg	VC	5 mol
3.32 kg	_	<mark>20 mol</mark>	2.	.28 kg	_	20 mol

© EarthCon 2016

Environmental Challenges BUSINESS SOLUTIONS ®

Example 3: 100% PCE degrades to 20% PCE; 20% TCE; 20% DCE; 30% VC

Original Concentration			Final Concentration		
3.32 kg	PCE	20 mol	0.66 kg	PCE	4 mol
0.00 kg	TCE	0 mol	0.53 kg	TCE	4 mol
0.00 kg	DCE	0 mol	0.39 kg	DCE	4 mol
0.00 kg	VC	0 mol	0.37 kg	VC	6 mol
3.32 kg	_	20 mol	1.95 kg	_	18 mol

Example 3: 100% PCE degrades to 20% PCE; 20% TCE; 20% DCE; 30% VC

Original Concentration			Final Con	<u>centration</u>	
3.32 kg	PCE	20 mol	0.66 kg	PCE	4 mol
0.00 kg	TCE	0 mol	0.53 kg	TCE	4 mol
0.00 kg	DCE	0 mol	0.39 kg	DCE	4 mol
0.00 kg	VC	0 mol	0.37 kg	VC	6 mol
3.32 kg		20 mol	1.95 kg		18 mol

Example 3: 100% PCE degrades to 20% PCE; 20% TCE; 20% DCE; 30% VC

Original Concentration			Final Co	ncentrat	<u>ion</u>
3.32 kg	PCE	20 mol	0.66 kg	PCE	4 mol
0.00 kg	TCE	0 mol	0.53 kg	TCE	4 mol
0.00 kg	DCE	0 mol	0.39 kg	DCE	4 mol
0.00 kg	VC	0 mol	0.37 kg	VC	6 mol
3.32 kg	_	20 mol	1.95 kg	_	<mark>18 mol</mark>

© EarthCon 2016

Environmental Challenges BUSINESS SOLUTIONS ®

Example 4: Degradation with evidence of additional sourcing

Original Concentration			Final Concentration		
3.32 kg	PCE	20 mol	0.66 kg	PCE	4 mol
0.00 kg	TCE	0 mol	0.79 kg	TCE	6 mol
0.00 kg	DCE	0 mol	0.77 kg	DCE	8 mol
0.00 kg	VC	0 mol	0.50 kg	VC	8 mol
3.32 kg	_	20 mol	2.72 kg	_	26 mol

Example 4: Degradation with evidence of additional sourcing

Original Concentration			Final Con	<u>centration</u>	
3.32 kg	PCE	20 mol	0.66 kg	PCE	4 mol
0.00 kg	TCE	0 mol	0.79 kg	TCE	6 mol
0.00 kg	DCE	0 mol	0.77 kg	DCE	8 mol
0.00 kg	VC	0 mol	0.50 kg	VC	8 mol
3.32 kg		20 mol	2.72 kg		26 mol

Example 4: Degradation with evidence of additional sourcing

Original Concentration			Final Co	ncentrat	<u>ion</u>
3.32 kg	PCE	20 mol	0.66 kg	PCE	4 mol
0.00 kg	TCE	0 mol	0.79 kg	TCE	6 mol
0.00 kg	DCE	0 mol	0.77 kg	DCE	8 mol
0.00 kg	VC	0 mol	0.50 kg	VC	8 mol
3.32 kg	-	20 mol	2.72 kg	_	<mark>26 mol</mark>

© EarthCon 2016

Environmental Challenges BUSINESS SOLUTIONS ®

© EarthCon 2016

Environmental Challenges BUSINESS SOLUTIONS ®

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

Molar Trends: Plume A

Molar Trends: Plume C

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

EARTHCON* Environmental Challenges BUSINESS SOLUTIONS *

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

Molar Trends: Plume B

Groundwater Plume Analytics Well Sufficiency Analysis

© 2016 EarthCon Consultants, Inc. All rights reserved. This material may not be reproduced, displayed, modified or distributed without the express prior written permission of the copyright holder.

This analysis requires fixed data points within a fixed area for the purposes of assessing relative changes of area, average concentration, and mass indicator over time. Therefore, any created isopleth maps are not intended to be a depiction or model of the actual plume but rather is meant to show conceptual behavior of the aforementioned metrics over time.

© EarthCon 2015

Environmental Challenges BUSINESS SOLUTIONS®

EARTHCON* Environmental Challenges BUSINESS SOLUTIONS •

EARTHCON* Environmental Challenges BUSINESS SOLUTIONS •

EARTHCON* Environmental Challenges BUSINESS SOLUTIONS *

EARTHCON® Environmental Challenges BUSINESS SOLUTIONS ®

Well Sufficiency Analysis Argument

Ricker Method [®] Well Sufficiency Argument							
	Comparison of Original Network to Reduced Network						
Strength of Argument	Primary Line	of Evidence	Secondary Lin	e of Evidence			
Strength of Argument	Trend via Mann-	Trend via Mann- Trend via Linear Relative Percent		Correlation			
	Kendall	Regression	Difference	Coefficient			
Very Strong	Same	Same	<10%	≥0.9			
Strong	Same	Same	<20%	≥0.8			
	Increasing/Stable	Increasing/Stable					
Marginal	or	or	<30%	≥0.7			
	Decreasing/Stable	le Decreasing/Stable					
Poor	Increasing/Decreasing	Increasing/Decreasing	>30%	<0.7			

Well Sufficiency Analysis Results

- Original Program
 - Cr+6: 76 wells
 - Other metals: 84 wells
 - VOCs: 84 wells
 - Quarterly monitoring
 - Quarterly reporting
 - Annual Cost: \$144,748

- Optimized Program
 - Cr⁺⁶: 42 wells
 - Other metals: 42 wells
 - VOCs: 37 wells
 - Every 3rd qtr monitoring
 - Annual reporting
 - Annual Cost: \$29,190

Thank you for the opportunity to present this information to you!

Joe A. Ricker, P.E. jricker@earthcon.com (901) 337-1010

EarthCon Consultants, Inc. 8700 Trail Lake Drive West Suite 101 Memphis, Tennessee 38125 www.earthcon.com

© 2016 EarthCon Consultants, Inc. All rights reserved. This material may not be reproduced, displayed, modified or distributed without the express prior written permission of the copyright holder.