Thermal desorption impacts on soil chemical, physical, and biological properties: Evaluation for agricultural production

Samantha Ritter, Thomas DeSutter, and Peter O'Brien

Department of Soil Science, School of Natural Resource Sciences, North Dakota State University, Fargo, North Dakota, USA

Bakken oil production

Data: North Dakota Department of Mineral Resources

- Petroleum related wells
- Williston basin

E UNIVERSIT

Bakken formation

2013 Oil spill

NORTH DAKOTA STATE UNIVERSITY

8.5 mm diameter hole released 21,000 barrels

Remediation objectives

Reduce contaminant concentration Return the land to pre-spill levels of agricultural productivity

- Landowner
- Oil company
- Remediation
 - professionals
 - NDSU
- Regulatory agency

Management Trajectory towards Initial Condition Starting Soil Manure Within 120 - 80% of **Original Condition** Condition Cropping Treatment No Trt 100% Clean (in place, no-till) Clean (Disturbed/Stockpiled) Function Mix **Relative Structure and** (Clean+Burned)

Time

Contaminated

Burned

Greenhouse Studies Contaminated $\cdots >$ time? **N-Rates/Amendments for In-Situ Remediation** (Stockpiled)

Wick and DeSutter, NDSU, ver.1

······>

Holistic Approach to the Remediation/ Reclamation/Restoration of Soils

Can we use TD soils for cropland production?

Greenhouse Laboratory analyses experiments **Physical characteristics** Plant growth and yield **Chemical characteristics Contaminant uptake Soil respiration Field research plots** Large scale plant growth and yield **Biological indicators Contaminant uptake Contaminant degradation** Surface energy balance

- Particle size, clay mineralogy, available water
- Soil organic C, surface area, total aggregation
- Saturated hydraulic conductivity
- Cation exchange capacity
- Cation selectivity
- pН

Greenhouse experiments

Field research plots

B

Treatment	Soil mix		
А	100% Native topsoil		
TD	100% TD treated soil		
SP	100% contaminated stockpile soil		
TD+A	50% Topsoil and 50% TDU soil (by volume)		
SP+A	50% Topsoil and 50% SP soil (by volume)		

+ m denotes 'manure' amendments at 45 Mg ha⁻¹ (20 ton ac⁻¹)

SP	SP+A+m	TD+A	SP+A
101	106	201	206
TD+A	SP+m	A+m	A
102	107	202	207
SP+A	TD+m	TD+A+m	SP+A+m
103	108	203	208
A+m	TD	TD	SP
104	109	204	209
TD+A+m	A	SP+m	TD+m
105	110	205	210

TD+m	SP+A
301	306
SP	SP+m
302	307
TD+A	TD
303	308
A+m	TD+A+m
304	309
A	SP+A+m
305	310

Field research plots

NDSU NORTH DAKOTA STATE UNIVERSITY

Homogenous mixing

Petroleum hydrocarbons

Field research plots

E UNIVERSITY

STAT

NL

Research plot progress

Wheat yield

N

B

Holistic Approach to the Remediation/ Reclamation/Restoration of Soils

Biological indicators

Soil health

"capacity of soil to function and sustain biological productivity, maintain environmental quality, and promote plant, animal and human health"

Physical and chemical properties have been the focus

Nitrogen

High annual nitrogen inputs to agricultural systems

Essential for plant growth

High proportion of unavailable (organic) nitrogen

Ammonium (NH₄⁺) and nitrate (NO₃⁻) accessible to plants

Nitrogen Cycle

(Adapted from Dose, H.)

AOB

Ammonia monooxygenase enzyme

Active Carbon

Conclusions

- TD treatment at 350 C (8-15 min) does not greatly alter soil physical and chemical properties
- Blending TD soil with native topsoil may be a viable option to match local soil productivity
- Biological indicators in blended treatments responded favorably, but more investigation is required for conclusive results
- A holistic approach to soil remediation improves soil resilience to changing conditions through time

Acknowledgements

- Steve and Patty Jensen
- Nelson Environmental Remediation, Ltd.
- Tesoro Logistics
- Antea Group MN
- QualiTech Environmental
- Haley & Aldrich, Inc.
- Agvise Laboratories
- Pace Analytical Services

Thank you

